

CGold: The Hitchhiker’s Guide to the CMake

Warning

The project is not under active development

Welcome to CGold!

This guide will show you how to use CMake and will help you to
write elegant, correct and scalable projects. We’ll start from the simple cases
and add more features one by one. This tutorial covers only part of the CMake
capabilities - some topics are skipped intentionally in favor of better modern
approaches [1]. This document is designed to be a good tutorial for absolute beginners
but also touches on some aspects in which advanced developers may be interested.
Look at this document as a skeleton/starting point for further CMake learning.

Enjoy!

	1. Overview
	1.1. What CMake can do

	1.2. What can’t be done with CMake

	2. First step
	2.1. CMake Installation

	2.2. Native build tool

	2.3. Compiler

	2.4. Minimal example

	2.5. Generate native tool files

	2.6. Build and run executable

	3. Tutorials
	3.1. CMake stages

	3.2. Out-of-source build

	3.3. Workflow

	3.4. Version and policies

	3.5. Project declaration

	3.6. Variables

	3.7. CMake listfiles

	3.8. Control structures

	3.9. Executables

	3.10. Tests

	3.11. Libraries

	3.12. Pseudo targets

	3.13. Collecting sources

	3.14. Usage requirements

	3.15. Build types

	3.16. configure_file

	3.17. Install

	3.18. Toolchain

	3.19. Generator expressions

	3.20. Properties

	3.21. Packing

	3.22. Continuous integration

	4. Platforms
	4.1. iOS

	4.2. Android

	5. Generators
	5.1. Ninja

	6. Compilers

[1]
See rejected section for list with detailed description

1. Overview

	1.1. What CMake can do

	1.2. What can’t be done with CMake

1.1. What CMake can do

CMake is a meta build system. It can generate real
native build tool files from abstracted text configuration.
Usually such code lives in CMakeLists.txt files.

What does it mean and how it can be useful?

1.1.1. Cross-platform development

Let’s assume you have some cross-platform project with C++ code shared along
different platforms/IDEs. Say you use Visual Studio on Windows, Xcode
on OSX and Makefile for Linux:

[image: ../_images/native-build.png]
What you will do if you want to add new bar.cpp source file? You have to add
it to every tool you use:

[image: ../_images/native-build-add.png]
To keep the environment consistent you have to do the similar update several
times. And the most important thing is that you have to do it manually
(arrow marked with a red color on the diagram in this case). Of course such
approach is error prone and not flexible.

CMake solve this design flaw by adding an extra step to the development process. You
can describe your project in a CMakeLists.txt file and use CMake to
generate the cross-platform build tools:

[image: ../_images/generate-native-files.png]
Same action - adding new bar.cpp file, will be done in one step now:

[image: ../_images/generate-native-files-add.png]
Note that the bottom part of the diagram was not changed. I.e. you still can
keep using your favorite tools like Visual Studio/msbuild,
Xcode/xcodebuild and Makefile/make!

See also

	KDE moving from autotools to CMake [http://lwn.net/Articles/188693/]

	Visual C++ Team Blog: Support for Android CMake projects in Visual Studio [https://blogs.msdn.microsoft.com/vcblog/2015/12/15/support-for-android-cmake-projects-in-visual-studio/]

	Android Studio: Add C and C++ code to Your Project [https://developer.android.com/studio/projects/add-native-code.html]

1.1.2. VCS friendly

Version Control (VCS) is used to share and save your code’s
history of changes when you work in a team. However, different IDEs use unique
files to track project files (*.sln, *.pbxproj, *.vscode, etc)
For example, here is the diff after adding bar.cpp source file to the bar
executable in Visual Studio:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/overview/snippets/foo-old.sln
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/overview/snippets/foo-new.sln
@@ -4,6 +4,8 @@
 VisualStudioVersion = 14.0.25123.0
 MinimumVisualStudioVersion = 10.0.40219.1
 Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "foo", "foo.vcxproj", "{C8F8C325-ACF3-460E-81DF-8515C72B334A}"
+EndProject
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "bar", "..\bar\bar.vcxproj", "{D14B78EA-1ADA-487F-B1ED-42C2B919C000}"
 EndProject
 Global
 	GlobalSection(SolutionConfigurationPlatforms) = preSolution
@@ -21,6 +23,14 @@
 		{C8F8C325-ACF3-460E-81DF-8515C72B334A}.Release|x64.Build.0 = Release|x64
 		{C8F8C325-ACF3-460E-81DF-8515C72B334A}.Release|x86.ActiveCfg = Release|Win32
 		{C8F8C325-ACF3-460E-81DF-8515C72B334A}.Release|x86.Build.0 = Release|Win32
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x64.ActiveCfg = Debug|x64
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x64.Build.0 = Debug|x64
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x86.ActiveCfg = Debug|Win32
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Debug|x86.Build.0 = Debug|Win32
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x64.ActiveCfg = Release|x64
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x64.Build.0 = Release|x64
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x86.ActiveCfg = Release|Win32
+		{D14B78EA-1ADA-487F-B1ED-42C2B919C000}.Release|x86.Build.0 = Release|Win32
 	EndGlobalSection
 	GlobalSection(SolutionProperties) = preSolution
 		HideSolutionNode = FALSE

And new bar.vcxproj of 150 lines of code. Here are some parts of it:

<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup Label="ProjectConfigurations">
 <ProjectConfiguration Include="Debug|Win32">
 <Configuration>Debug</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Release|Win32">
 <Configuration>Release</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>true</UseDebugLibraries>
 <PlatformToolset>v140</PlatformToolset>
 <CharacterSet>Unicode</CharacterSet>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>false</UseDebugLibraries>
 <PlatformToolset>v140</PlatformToolset>
 <WholeProgramOptimization>true</WholeProgramOptimization>
 <CharacterSet>Unicode</CharacterSet>
 </PropertyGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
 <ImportGroup Label="ExtensionSettings">
 </ImportGroup>
 <ImportGroup Label="Shared">
 </ImportGroup>
 <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
 </ImportGroup>

 <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
 <ClCompile>
 <WarningLevel>Level3</WarningLevel>
 <PrecompiledHeader>
 </PrecompiledHeader>
 <Optimization>MaxSpeed</Optimization>
 <FunctionLevelLinking>true</FunctionLevelLinking>
 <IntrinsicFunctions>true</IntrinsicFunctions>
 <PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
 </ClCompile>
 <Link>
 <SubSystem>Console</SubSystem>
 <EnableCOMDATFolding>true</EnableCOMDATFolding>
 <OptimizeReferences>true</OptimizeReferences>
 <GenerateDebugInformation>true</GenerateDebugInformation>
 </Link>

 <ItemGroup>
 <ClCompile Include="bar.cpp" />
 </ItemGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
 <ImportGroup Label="ExtensionTargets">
 </ImportGroup>

When using Xcode:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/overview/snippets/project-old.pbxproj
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/overview/snippets/project-new.pbxproj
@@ -8,6 +8,7 @@

 /* Begin PBXBuildFile section */
 		0FE79B881D22BAE400E38C27 /* main.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 0FE79B871D22BAE400E38C27 /* main.cpp */; };
+		0FE79B951D22BB5E00E38C27 /* bar.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 0FE79B941D22BB5E00E38C27 /* bar.cpp */; };
 /* End PBXBuildFile section */

 /* Begin PBXCopyFilesBuildPhase section */
@@ -20,15 +21,33 @@
);
 			runOnlyForDeploymentPostprocessing = 1;
 		};
+		0FE79B901D22BB5E00E38C27 /* CopyFiles */ = {
+			isa = PBXCopyFilesBuildPhase;
+			buildActionMask = 2147483647;
+			dstPath = /usr/share/man/man1/;
+			dstSubfolderSpec = 0;
+			files = (
+);
+			runOnlyForDeploymentPostprocessing = 1;
+		};
 /* End PBXCopyFilesBuildPhase section */

 /* Begin PBXFileReference section */
 		0FE79B841D22BAE400E38C27 /* foo */ = {isa = PBXFileReference; explicitFileType = "compiled.mach-o.executable"; includeInIndex = 0; path = foo; sourceTree = BUILT_PRODUCTS_DIR; };
 		0FE79B871D22BAE400E38C27 /* main.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = main.cpp; sourceTree = "<group>"; };
+		0FE79B921D22BB5E00E38C27 /* bar */ = {isa = PBXFileReference; explicitFileType = "compiled.mach-o.executable"; includeInIndex = 0; path = bar; sourceTree = BUILT_PRODUCTS_DIR; };
+		0FE79B941D22BB5E00E38C27 /* bar.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = bar.cpp; sourceTree = "<group>"; };
 /* End PBXFileReference section */

 /* Begin PBXFrameworksBuildPhase section */
 		0FE79B811D22BAE400E38C27 /* Frameworks */ = {
+			isa = PBXFrameworksBuildPhase;
+			buildActionMask = 2147483647;
+			files = (
+);
+			runOnlyForDeploymentPostprocessing = 0;
+		};
+		0FE79B8F1D22BB5E00E38C27 /* Frameworks */ = {
 			isa = PBXFrameworksBuildPhase;
 			buildActionMask = 2147483647;
 			files = (
@@ -42,6 +61,7 @@
 			isa = PBXGroup;
 			children = (
 				0FE79B861D22BAE400E38C27 /* foo */,
+				0FE79B931D22BB5E00E38C27 /* bar */,
 				0FE79B851D22BAE400E38C27 /* Products */,
);
 			sourceTree = "<group>";
@@ -50,6 +70,7 @@
 			isa = PBXGroup;
 			children = (
 				0FE79B841D22BAE400E38C27 /* foo */,
+				0FE79B921D22BB5E00E38C27 /* bar */,
);
 			name = Products;
 			sourceTree = "<group>";
@@ -60,6 +81,14 @@
 				0FE79B871D22BAE400E38C27 /* main.cpp */,
);
 			path = foo;
+			sourceTree = "<group>";
+		};
+		0FE79B931D22BB5E00E38C27 /* bar */ = {
+			isa = PBXGroup;
+			children = (
+				0FE79B941D22BB5E00E38C27 /* bar.cpp */,
+);
+			path = bar;
 			sourceTree = "<group>";
 		};
 /* End PBXGroup section */
@@ -80,6 +109,23 @@
 			name = foo;
 			productName = foo;
 			productReference = 0FE79B841D22BAE400E38C27 /* foo */;
+			productType = "com.apple.product-type.tool";
+		};
+		0FE79B911D22BB5E00E38C27 /* bar */ = {
+			isa = PBXNativeTarget;
+			buildConfigurationList = 0FE79B981D22BB5E00E38C27 /* Build configuration list for PBXNativeTarget "bar" */;
+			buildPhases = (
+				0FE79B8E1D22BB5E00E38C27 /* Sources */,
+				0FE79B8F1D22BB5E00E38C27 /* Frameworks */,
+				0FE79B901D22BB5E00E38C27 /* CopyFiles */,
+);
+			buildRules = (
+);
+			dependencies = (
+);
+			name = bar;
+			productName = bar;
+			productReference = 0FE79B921D22BB5E00E38C27 /* bar */;
 			productType = "com.apple.product-type.tool";
 		};
 /* End PBXNativeTarget section */
@@ -94,6 +140,9 @@
 					0FE79B831D22BAE400E38C27 = {
 						CreatedOnToolsVersion = 7.3.1;
 					};
+					0FE79B911D22BB5E00E38C27 = {
+						CreatedOnToolsVersion = 7.3.1;
+					};
 				};
 			};
 			buildConfigurationList = 0FE79B7F1D22BAE400E38C27 /* Build configuration list for PBXProject "foo" */;
@@ -109,6 +158,7 @@
 			projectRoot = "";
 			targets = (
 				0FE79B831D22BAE400E38C27 /* foo */,
+				0FE79B911D22BB5E00E38C27 /* bar */,
);
 		};
 /* End PBXProject section */
@@ -119,6 +169,14 @@
 			buildActionMask = 2147483647;
 			files = (
 				0FE79B881D22BAE400E38C27 /* main.cpp in Sources */,
+);
+			runOnlyForDeploymentPostprocessing = 0;
+		};
+		0FE79B8E1D22BB5E00E38C27 /* Sources */ = {
+			isa = PBXSourcesBuildPhase;
+			buildActionMask = 2147483647;
+			files = (
+				0FE79B951D22BB5E00E38C27 /* bar.cpp in Sources */,
);
 			runOnlyForDeploymentPostprocessing = 0;
 		};
@@ -220,6 +278,20 @@
 			};
 			name = Release;
 		};
+		0FE79B961D22BB5E00E38C27 /* Debug */ = {
+			isa = XCBuildConfiguration;
+			buildSettings = {
+				PRODUCT_NAME = "$(TARGET_NAME)";
+			};
+			name = Debug;
+		};
+		0FE79B971D22BB5E00E38C27 /* Release */ = {
+			isa = XCBuildConfiguration;
+			buildSettings = {
+				PRODUCT_NAME = "$(TARGET_NAME)";
+			};
+			name = Release;
+		};
 /* End XCBuildConfiguration section */

 /* Begin XCConfigurationList section */
@@ -239,6 +311,15 @@
 				0FE79B8D1D22BAE400E38C27 /* Release */,
);
 			defaultConfigurationIsVisible = 0;
+			defaultConfigurationName = Release;
+		};
+		0FE79B981D22BB5E00E38C27 /* Build configuration list for PBXNativeTarget "bar" */ = {
+			isa = XCConfigurationList;
+			buildConfigurations = (
+				0FE79B961D22BB5E00E38C27 /* Debug */,
+				0FE79B971D22BB5E00E38C27 /* Release */,
+);
+			defaultConfigurationIsVisible = 0;
 		};
 /* End XCConfigurationList section */
 	};

As you can see, a lot of magic happens while doing a simple
task like adding one new source file to a target. Additionally,

	Are you sure that all XML sections added on purpose and was not the result
of accidental clicking?

	Are you sure all this x86/x64/Win32, Debug/Release configurations connected
together in right order and you haven’t break something while debugging?

	Are you sure all that magic numbers was not read from your environment while
you have done non-trivial scripting and is in fact some private key,
token or password?

	Do you think it will be easy to resolve conflict in this file?

Luckily we have CMake which helps us in a neat way. We haven’t
touched any CMake syntax yet but I’m pretty sure it’s quite
obvious what’s happening here :)

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/overview/snippets/CMakeLists-old.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/overview/snippets/CMakeLists-new.txt
@@ -2,3 +2,4 @@
 project(foo)

 add_executable(foo foo.cpp)
+add_executable(bar bar.cpp)

What a relief! Having such human-readable form of build system commands
actually making CMake a convenient tool for development even
if you’re using only one platform.

1.1.3. Experimenting

Even if your team has no plans to work with some native tools
originally, this may change in the future. E.g. you have worked with Makefile and
want to try Ninja. What you will do? Convert manually? Find the converter?
Write converter from scratch? Write new Ninja configuration from scratch?
With CMake you can change cmake -G 'Unix Makefiles' to
cmake -G Ninja - done!

This helps developers of new IDEs also. Instead of putting your IDE users into
situations when they have to decide should they use your SuperDuperIDE
instead of their favorite one and probably writing endless number of
SuperDuperIDE <-> Xcode, SuperDuperIDE <-> Visual Studio, etc.
converters, all you have to do is to add new generator -G SuperDuperIDE to
CMake.

1.1.4. Family of tools

CMake is a family of tools that can help you during all stages of
sources for developers -> quality control -> installers for users
stack. Next activity diagram [http://yed-uml.readthedocs.io/en/latest/activity-diagram.html] shows CMake, CTest and CPack connections:

[image: ../_images/cmake-environment.png]

Note

	All stages will be described fully in Tutorials.

See also

	CMake Workflow

1.1.5. Summary

	Human-readable configuration

	Single configuration for all tools

	Cross-platform/cross-tools friendly development

	Doesn’t force you to change your favorite build tool/IDE

	VCS friendly development

	Easy experimenting

	Easy development of new IDEs

1.2. What can’t be done with CMake

Good judgement comes from experience.

Experience comes from bad judgement.

– Mulla Nasrudin (? [https://en.wikiquote.org/wiki/Jim_Horning])

CMake has its strengths and weaknesses. Most of the drawbacks
mentioned here can be worked around by using approaches that may differ from
your normal workflow, yet still reach the end goal. Try to look at them from another
angle; think of the picture as a whole and remember that the advantages definitely
outweigh the disadvantages.

1.2.1. Language/syntax

This is probably the first thing you will be hit with. The CMake
language is not something you can compare with what you have likely used
before. There are no classes, no maps, no virtual functions or lambdas. Even
such tasks like “parse the input arguments of a function” and “return result
from a function” are quite
tricky for the beginners. CMake is definitely not a language
you want to try to experiment with implementation of red-black tree or
processing JSON responses from a server. But it does handle regular
development very efficiently and you probably will find it more attractive than
XML files, autotools configs or JSON-like syntax [https://gyp.gsrc.io/docs/LanguageSpecification.md#Example].

Think about it in this
way: if you want to do some nasty non-standard thing then probably you should
stop. If you think it is something important, then it might be
quite useful for other CMake users too. In this case you need to
think about implementing new feature in CMake itself. CMake
is open-source project written in C++, and additional features are always being introduced.
You can also discuss any problems in the CMake mailing-list [https://cmake.org/mailman/listinfo/cmake-developers] to see how you can help
with improving the current state.

CMake mailing list

	Wrapping CMake functionality with another language [http://www.mail-archive.com/cmake-developers%40cmake.org/msg15199.html]

1.2.2. Affecting workflow

This might sound contradictory to the statement that you can
keep using your favorite tools, but it’s
not. You still can work with your favorite IDE, but you must remember that
CMake is now “in charge”.

Imagine you have C++ header version.h
generated automatically by some script from template version.h.in. You see
version.h file in your IDE, you can update it and run build and new variables
from version.h will be used in binary, but you should never do it since
you know that source is actually version.h.in.

Similarly, when you use CMake - you should never
update your build configuration directly in the IDE. Instead, you have to remember that
any target files generated from CMakeLists.txt and all your project additions made
directly in the IDE will be lost next time you run CMake.

Wrong workflow:

[image: ../_images/bad-workflow.png]
Correct workflow:

[image: ../_images/good-workflow.png]
It’s not enough to know that if you want to add a new library to your
Visual Studio solution you can do:

	Add ‣ New Project … ‣ Visual C++ ‣ Static Library

You have to know that this must instead be done by adding a new
add_library command to CMakeLists.txt.

1.2.3. Incomplete functionality coverage

There are some missing features in CMake. Mapping of
CMake functionality <-> native build tool functionality
is not always bijective. Often this can be worked around by generating different
native tool files from the same CMake code. For example, it’s possible using
autotools to create two versions of a library
(shared + static) in a single run.
However, this may affect performance, or be outright impossible for other platforms
(e.g., Windows). With CMake, you can generate two versions of a
project from a single CMakeLists.txt file: one each for shared and static
variants, effectively running generate/build twice.

With Visual Studio you can have two variants, x86 and x64, in one solution
file. With CMake you have to generate project twice:
once with Visual Studio generator and one more time with Visual Studio Win64
generator.

Similarly with Xcode. In general CMake can’t mix two different
toolchains (at least for now) so it’s not possible to generate an Xcode
project with iOS and OSX targets—again, just generate code for each
platform independently.

Note

	Building universal iOS libraries

1.2.4. Unrelocatable projects

Internally, CMake saves the full paths to each of the sources,
so it’s not possible to generate a project then share it between several developers.
In other words, you can’t be “the CMake person” who will generate separate projects for
those who use Xcode and those who use Visual Studio. All developers in the team should be
aware of how to generate projects using CMake. In practice it means they have
to know which CMake arguments to use, some basic examples being
cmake -H. -B_builds -GXcode and cmake -H. -B_builds "-GVisual Studio 12 2013"
for Xcode and Visual Studio, respectively. Additionally, they must understand the
changes they must make in their workflow. As a general rule, developers should make an effort to learn the tools
used in making the code they wish to utilize. Only when providing an end product to users is it
your responsibility to generate user-friendly installers like *.msi instead of
simply providing the project files.

CMake documentation

	CMAKE_USE_RELATIVE_PATHS removed since CMake 3.4 [https://cmake.org/cmake/help/latest/release/3.4.html#deprecated-and-removed-features]

Even if support for relative paths will be re-implemented in the future, each developer
in the team should have CMake installed, as there are other tasks which
CMake automatically takes care of that may be done incorrectly if done manually.
A few examples are:

	The automatic detection of changes to CMakeLists.txt and subsequent regeneration of the source tree.

	The inclusion of custom build steps with the built-in scripting mode.

	For doing internal stuff like searching for installed dependent packages

TODO

Link to relocatable packages

2. First step

[image: DON'T PANIC!]
Okay, time to run some code! Now we will check the tools we need, create a project
with one executable, then build and run it. Try to follow instructions
accurately. The goal of this section is to run the simplest configuration with
commonly/widely used tools. After you’ve checked that everything is fine and
feel comfortable you can find more options in:
Platforms, Generators and Compilers.
Each command’s usage/pitfalls will be described in depth further in Tutorials.

	2.1. CMake Installation
	2.1.1. Ubuntu

	2.1.2. OS X

	2.1.3. Windows

	2.2. Native build tool
	2.2.1. Visual Studio

	2.2.2. Xcode

	2.2.3. Unix Makefiles

	2.3. Compiler
	2.3.1. Visual Studio

	2.3.2. Ubuntu GCC

	2.3.3. OSX Clang

	2.4. Minimal example
	2.4.1. Description

	2.5. Generate native tool files
	2.5.1. GUI: Visual Studio

	2.5.2. GUI: Xcode

	2.5.3. CLI: Visual Studio

	2.5.4. CLI: Xcode

	2.5.5. CLI: Make

	2.6. Build and run executable
	2.6.1. IDE: Visual Studio

	2.6.2. IDE: Xcode

	2.6.3. CLI: Visual Studio

	2.6.4. CLI: Xcode

	2.6.5. CLI: Make

2.1. CMake Installation

That’s it, ground.

I wonder if it will be friends with me?

Hello, ground!

– Whale [https://www.youtube.com/watch?v=h02a2HSB58M]

Obviously to use some tool you need to install it first. CMake can be installed
using your default system package manager or by getting binaries from
Download page [https://cmake.org/download/].

2.1.1. Ubuntu

CMake can be installed by apt-get:

> sudo apt-get -y install cmake
> which cmake
/usr/bin/cmake
> cmake --version
cmake version 2.8.12.2

Installing CMake GUI is similar:

> sudo apt-get -y install cmake-qt-gui
> which cmake-gui
/usr/bin/cmake-gui
> cmake-gui --version
cmake version 2.8.12.2

Binaries can be downloaded and unpacked manually to any location:

> wget https://cmake.org/files/v3.4/cmake-3.4.1-Linux-x86_64.tar.gz
> tar xf cmake-3.4.1-Linux-x86_64.tar.gz
> export PATH="`pwd`/cmake-3.4.1-Linux-x86_64/bin:$PATH" # save it in .bashrc if needed
> which cmake
/.../cmake-3.4.1-Linux-x86_64/bin/cmake
> which cmake-gui
/.../cmake-3.4.1-Linux-x86_64/bin/cmake-gui

Version:

> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).
> cmake-gui --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake)

2.1.2. OS X

CMake can be installed on Mac using brew [http://brew.sh]:

> brew install cmake
> which cmake
/usr/local/bin/cmake
> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake)

Binaries can be downloaded and unpacked manually to any location:

> wget https://cmake.org/files/v3.4/cmake-3.4.1-Darwin-x86_64.tar.gz
> tar xf cmake-3.4.1-Darwin-x86_64.tar.gz
> export PATH="`pwd`/cmake-3.4.1-Darwin-x86_64/CMake.app/Contents/bin:$PATH"
> which cmake
/.../cmake-3.4.1-Darwin-x86_64/CMake.app/Contents/bin/cmake
> which cmake-gui
/.../cmake-3.4.1-Darwin-x86_64/CMake.app/Contents/bin/cmake-gui

Version:

> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).
> cmake-gui --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).

2.1.2.1. DMG installer

Download cmake-*.dmg installer from
Download page [https://cmake.org/download/] and run it.

Click Agree:

[image: ../_images/01-agree.png]
Drag CMake.app to Applications folder (or any other location):

[image: ../_images/02-drag.png]
Start Launchpad:

[image: ../_images/03-launchpad.png]
Find CMake and launch it:

[image: ../_images/04-search-cmake.png]

2.1.3. Windows

Download cmake-*.exe installer from
Download page [https://cmake.org/download/] and run it.

Click Next:

[image: ../_images/installer-01.png]
Click I agree:

[image: ../_images/installer-02.png]
Check one of the Add CMake to the system PATH ... if you want to have
CMake in PATH. Check Create CMake Desktop Icon to create icon on
desktop:

[image: ../_images/installer-03.png]
Choose installation path. Add suffix with version in case you want to have
several versions installed simultaneously:

[image: ../_images/installer-04.png]
Shortcut in Start Menu folder:

[image: ../_images/installer-05.png]
Installing…

[image: ../_images/installer-06.png]
Click Finish:

[image: ../_images/installer-07.png]
Desktop icon created:

[image: ../_images/desktop-icon.png]
If you set Add CMake to the system PATH ... checkbox then CMake can be
accessed via
terminal [http://smallbusiness.chron.com/open-terminal-session-windows-7-56627.html]
(otherwise you need to add ...\bin to
PATH environment variable [http://www.computerhope.com/issues/ch000549.htm]):

> where cmake
C:\soft\develop\cmake\3.4.1\bin\cmake.exe

> where cmake-gui
C:\soft\develop\cmake\3.4.1\bin\cmake-gui.exe

> cmake --version
cmake version 3.4.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).

See also

	Installing CMake [https://cmake.org/install/]

	How to install cmake 3.2 on ubuntu 14.04? [http://askubuntu.com/questions/610291/how-to-install-cmake-3-2-on-ubuntu-14-04]

2.2. Native build tool

As already mentioned CMake is not designed to do the build itself -
it generates files
which can be used by a real native build tool,
hence you need to choose such a
tool(s) and install it if needed. Option -G <generator-name> [https://cmake.org/cmake/help/v3.5/manual/cmake.1.html#options] can be used to
specify what type of generator will be used. If no such option present CMake
will use default generator (e.g. Unix Makefiles on *nix platforms).

The list of available generators [https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html] depends on the host OS (e.g. Visual Studio
family generators are not available on Linux). You can get this list by running
cmake --help:

> cmake --help
...
Generators

The following generators are available on this platform:
 Unix Makefiles = Generates standard UNIX makefiles.
 Ninja = Generates build.ninja files (experimental).
 Watcom WMake = Generates Watcom WMake makefiles.
 CodeBlocks - Ninja = Generates CodeBlocks project files.
 ...

	2.2.1. Visual Studio
	2.2.1.1. Manage features

	2.2.2. Xcode
	2.2.2.1. Default install with App Store

	2.2.2.2. Several/custom Xcode versions

	2.2.3. Unix Makefiles
	2.2.3.1. Ubuntu Installation

	2.2.3.2. OSX Installation

CMake documentation

	CMake Generators [https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html]

2.2.1. Visual Studio

Visual Studio is an IDE created by Microsoft. Here are the links to the community versions:

	Visual Studio Community 2017 [https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community]

	Visual Studio Community 2015 [https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409]

	Visual Studio Community 2013 [https://go.microsoft.com/fwlink/?LinkId=532496&type=ISO&clcid=0x409]

See also

	Official site [https://www.visualstudio.com/]

Wikipedia

	Visual Studio [https://en.wikipedia.org/wiki/Microsoft_Visual_Studio]

2.2.1.1. Manage features

The installer will offer you a menu to manage the features you need. Don’t forget to
add Programming Languages ‣ Visual C++:

[image: ../../_images/visual-cxx.png]
If you already have Visual Studio installed you can go to
System ‣ Apps & features ‣ Modify:

[image: ../../_images/01-modify.png]
[image: ../../_images/02-modify.png]

See also

	CMake Tools for Visual Studio [http://cmaketools.codeplex.com/]

	VsVim [https://visualstudiogallery.msdn.microsoft.com/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329]

	Editor Guidelines [https://visualstudiogallery.msdn.microsoft.com/da227a0b-0e31-4a11-8f6b-3a149cf2e459]

	Developer Command Prompt

2.2.2. Xcode

Xcode is an IDE for OSX/iOS development (Wikipedia [https://en.wikipedia.org/wiki/Xcode]).

2.2.2.1. Default install with App Store

Go to App Store:

[image: ../../_images/01-go-to-app-store.png]
Search for Xcode application:

[image: ../../_images/02-search-for-xcode.png]
Run install:

[image: ../../_images/03-run-install.png]
After successful installation run Launchpad:

[image: ../../_images/04-launchpad.png]
Search for Xcode and launch it:

[image: ../../_images/05-launchpad-xcode.png]
Success!

[image: ../../_images/06-xcode-launched.png]

Note

Other developer tools are installed now too.

2.2.2.2. Several/custom Xcode versions

If you want to have several Xcode versions simultaneously for testing
purposes or you want a specific version of Xcode you can download/install
it manually from Apple Developers site [https://developer.apple.com/download/more/].

For example:

> ls /Applications/develop/ide/xcode
4.6.3/
5.0.2/
6.1/
6.4/
7.2/
7.2.1/
7.3.1/

The default directory and version can be checked with xcode-select/xcodebuild tools:

> xcode-select --print-path
/Applications/develop/ide/xcode/7.3.1/Xcode.app/Contents/Developer

> xcodebuild -version
Xcode 7.3.1
Build version 7D1014

The default version can be changed with xcode-select -switch:

> sudo xcode-select -switch /Applications/develop/ide/xcode/7.2/Xcode.app/Contents/Developer

> xcodebuild -version
Xcode 7.2
Build version 7C68

Or by using the environment variable DEVELOPER_DIR:

> export DEVELOPER_DIR=/Applications/develop/ide/xcode/7.3.1/Xcode.app/Contents/Developer
> xcodebuild -version
Xcode 7.3.1
Build version 7D1014

> export DEVELOPER_DIR=/Applications/develop/ide/xcode/7.2/Xcode.app/Contents/Developer
> xcodebuild -version
Xcode 7.2
Build version 7C68

See also

	Polly iOS toolchains [https://github.com/ruslo/polly/wiki/Toolchain-list#ios]

2.2.3. Unix Makefiles

	CMake option: -G "Unix Makefiles"

CMake documentation

	Unix Makefiles [https://cmake.org/cmake/help/v3.5/generator/Unix%20Makefiles.html]

Wikipedia

	Make [https://en.wikipedia.org/wiki/Make_%28software%29]

2.2.3.1. Ubuntu Installation

> sudo apt-get -y install make
> make -v
GNU Make 3.81
...

2.2.3.2. OSX Installation

If you’re planning to install Xcode then install it first. make and
other tools come with Xcode. Otherwise make can be installed
with Command line tools only.

Run Launchpad:

[image: ../../_images/01-launchpad.png]
Find Terminal and launch it:

[image: ../../_images/02-launchpad-terminal.png]
Try to execute make (or any other commands for development like GCC, git,
clang, etc.). The following pop-up dialog window will appear:

[image: ../../_images/03-developers-tools-pop-up.png]
Click Install. Wait until it has finished with the success message:

[image: ../../_images/04-installed.png]
Check make location and version:

> which make
/usr/bin/make

> make --version
GNU Make 3.81
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

This program built for i386-apple-darwin11.3.0

Clang will be installed too:

> which clang
/usr/bin/clang

> clang --version
Apple LLVM version 7.0.2 (clang-700.1.81)
Target: x86_64-apple-darwin14.0.0
Thread model: posix

As well as GCC:

> which gcc
/usr/bin/gcc

> gcc --version
Configured with: --prefix=/Library/Developer/CommandLineTools/usr --with-gxx-include-dir=/usr/include/c++/4.2.1
Apple LLVM version 7.0.2 (clang-700.1.81)
Target: x86_64-apple-darwin14.0.0
Thread model: posix

2.3. Compiler

The Native build tool will only orchestrate our builds but we need to have the
compiler which will actually create binaries from our C++ sources.

	2.3.1. Visual Studio

	2.3.2. Ubuntu GCC

	2.3.3. OSX Clang

2.3.1. Visual Studio

The Visual Studio compiler (aka cl.exe) will be
installed with the IDE,
no additional steps are needed.

2.3.2. Ubuntu GCC

The GCC compiler is usually used on Linux OS. To install it on Ubuntu run:

> sudo apt-get install -y gcc

Check the location and version

> which gcc
/usr/bin/gcc

> gcc --version
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4
Copyright (C) 2013 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2.3.3. OSX Clang

Clang compiler will be installed with
Xcode or while installing
make.

2.4. Minimal example

Create an empty directory and put foo.cpp and CMakeLists.txt files into it.

Examples on GitHub

	Repository [https://github.com/cgold-examples/minimal-example]

	Latest ZIP [https://github.com/cgold-examples/minimal-example/archive/master.zip]

foo.cpp is the C++ source of our executable:

// foo.cpp

#include <iostream> // std::cout

int main() {
 std::cout << "Hello from CGold!" << std::endl;
}

CMakeLists.txt is a project configuration, i.e. source for CMake:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

2.4.1. Description

2.4.1.1. foo.cpp

Explanation of the foo.cpp content is out of the scope of this document, so it will
be skipped.

2.4.1.2. CMakeLists.txt

The first line of CMakeLists.txt is a comment and will be ignored:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

The next line tells us about the CMake version for which this file is written:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

2.8 means we can use this configuration with CMake versions like
2.8, 2.8.7, 3.0, 3.5.1, etc. but not with 2.6.0 or 2.4.2.

With the declaration of the project foo, the Visual Studio solution will
have name foo.sln, and the Xcode project name will be foo.xcodeproj:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

Adding executable foo with source foo.cpp:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

CMake has some predefined settings so it will figure out the following
things:

	*.cpp extension is for the C++ sources, so target foo will be built with the C++ compiler

	on Windows executables usually have the suffix .exe, so the resulting binary will be named foo.exe

	on Unix platforms like OSX or Linux executables usually have no suffixes,
so the resulting binary will be named foo

2.5. Generate native tool files

You can use the GUI or command-line version of CMake to generate native files.

	2.5.1. GUI: Visual Studio

	2.5.2. GUI: Xcode

	2.5.3. CLI: Visual Studio

	2.5.4. CLI: Xcode

	2.5.5. CLI: Make

2.5.1. GUI: Visual Studio

Open CMake GUI:

[image: ../../_images/01-open-cmake-gui.png]
Click Browse Source... and find directory with CMakeLists.txt and foo.cpp:

[image: ../../_images/02-click-browse-source.png]
Now we need to choose directory where to put all temporary files. Let’s create
separate directory so we can keep our original directory clean.
Click Browse Build..:

[image: ../../_images/03-click-browse-build.png]
Find directory with CMakeLists.txt and click Make New Folder to create
_builds directory:

[image: ../../_images/04-create-new-folder.png]
Check the resulted layout:

[image: ../../_images/05-layout.png]
Click on Configure to process CMakeLists.txt:

[image: ../../_images/06-configure.png]
CMake will ask for the generator you want to use.
Pick Visual Studio you have installed and add Win64 to have x64 target:

[image: ../../_images/07-generator.png]
After you click Finish CMake will run internal tests on build tool to
check that everything works correctly. You can see Configuring done
message when finished:

[image: ../../_images/08-configuring-done.png]
For now there was no native build tool files generated, on this step user
is able to do additional tuning of project. We don’t want such tuning now so
will run Generate:

[image: ../../_images/09-generate.png]
Now if you take a look at _builds folder you can find generated
Visual Studio solution file:

[image: ../../_images/10-open-solution.png]
Open foo.sln and run executable.

2.5.2. GUI: Xcode

Open CMake GUI:

[image: ../../_images/01-open.png]
Click Browse Source... and find directory with CMakeLists.txt and foo.cpp:

[image: ../../_images/02-click-browse-source1.png]
Now we need to choose directory where to put all temporary files. Let’s create
separate directory so we can keep our original directory clean.
Click Browse Build..:

[image: ../../_images/03-browse-build.png]
Find directory with CMakeLists.txt and click New Folder to create
_builds directory:

[image: ../../_images/04-new-folder.png]
Enter _builds and click Create:

[image: ../../_images/05-create-new-folder.png]
Check the resulted layout:

[image: ../../_images/06-check-layout.png]
Click on Configure to process CMakeLists.txt:

[image: ../../_images/07-configure.png]
CMake will ask for the generator you want to use, pick Xcode:

[image: ../../_images/08-generator.png]
After you click Done CMake will run internal tests on build tool to
check that everything works correctly. You can see Configuring done
message when finished:

[image: ../../_images/09-configure-done.png]
For now there was no native build tool files generated, on this step user
is able to do additional tuning of the project. We don’t want such tuning now so
will run Generate:

[image: ../../_images/10-generate-done.png]
Now if you take a look at _builds folder you can find generated
Xcode project file:

[image: ../../_images/11-project-created.png]
Open foo.xcodeproj and run executable.

2.5.3. CLI: Visual Studio

Run cmd.exe and go to the directory with sources:

> cd C:\cgold-example

[cgold-example]> dir

... CMakeLists.txt
... foo.cpp

Generate Visual Studio solution using CMake. Use
-H. -B_builds for specifying paths
and -G "Visual Studio 14 2015 Win64" for the generator:

[cgold-example]> cmake -H. -B_builds -G "Visual Studio 14 2015 Win64"
-- The C compiler identification is MSVC 19.0.23918.0
-- The CXX compiler identification is MSVC 19.0.23918.0
-- Check for working C compiler using: Visual Studio 14 2015 Win64
-- Check for working C compiler using: Visual Studio 14 2015 Win64 -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler using: Visual Studio 14 2015 Win64
-- Check for working CXX compiler using: Visual Studio 14 2015 Win64 -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: C:/cgold-example/_builds

You can start IDE by start _builds\foo.sln and
run example from IDE
or keep using command line.

2.5.4. CLI: Xcode

Open terminal and go to the directory with sources:

> cd cgold-example
[cgold-example]> ls
CMakeLists.txt foo.cpp

Generate Xcode project using CMake. Use
-H. -B_builds for specifying paths
and -GXcode for the generator:

[cgold-example]> cmake -H. -B_builds -GXcode
-- The C compiler identification is AppleClang 7.3.0.7030031
-- The CXX compiler identification is AppleClang 7.3.0.7030031
-- Check for working C compiler: /.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang
-- Check for working C compiler: /.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang++
-- Check for working CXX compiler: /.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/ruslo/cgold-example/_builds

You can start IDE by open _builds/foo.xcodeproj (add -a to set
the version of Xcode you need:
open -a /Applications/develop/ide/xcode/6.4/Xcode.app _builds/foo.xcodeproj)
and run example from IDE
or keep using command line.

2.5.5. CLI: Make

The instructions are the same for both Linux and OSX. Open a terminal and change
to the directory with the sources:

> cd cgold-example
[cgold-example]> ls
CMakeLists.txt foo.cpp

Generate a Makefile using CMake. Use -H. -B_builds for
specifying paths and -G "Unix Makefiles" for the generator (note that
Unix Makefiles is usually the default generator so -G is probably not
needed at all):

[cgold-example]> cmake -H. -B_builds -G "Unix Makefiles"
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cgold-example/_builds

The generated Makefile can be found in the _builds directory:

> ls _builds/Makefile
_builds/Makefile

Next let’s build and run the executable.

2.6. Build and run executable

In this section we will build and run the foo executable. You can do
it by opening the project in an IDE or by using the command line (it
doesn’t matter how the project was generated earlier: by using either
the GUI or CLI version of CMake).

	2.6.1. IDE: Visual Studio

	2.6.2. IDE: Xcode

	2.6.3. CLI: Visual Studio

	2.6.4. CLI: Xcode

	2.6.5. CLI: Make

2.6.1. IDE: Visual Studio

Since we used * Win64 generator, the target’s architecture is x64:

[image: ../../_images/01-x64.png]
We need to tell Visual Studio that the target we want to run is foo. This can
be done by right clicking on foo target in Solution Explorer and
choosing Set as StartUp Project:

[image: ../../_images/02-startup-project.png]
To run the executable go to Debug ‣ Start Without Debugging:

[image: ../../_images/03-start.png]
Visual Studio will build the target first and then execute it:

[image: ../../_images/04-hello.png]
Done!

2.6.2. IDE: Xcode

Choose the target you want to run:

[image: ../../_images/01-target.png]
Press the Run button:

[image: ../../_images/02-run.png]
The result will be shown in Debug area:

[image: ../../_images/03-finished.png]
Done!

2.6.3. CLI: Visual Studio

To build the Visual Studio solution from the command line, MSBuild.exe can be used.
You must add the MSBuild.exe location to your PATH or open Visual Studio Developer
Prompt instead of cmd.exe (run where msbuild to check) and run
msbuild _builds\foo.sln

But CMake offers a cross-tool way to do exactly the same: cmake --build _builds
(no need to have MSBuild.exe in your PATH).

[cgold-example]> cmake --build _builds

...

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:01.54

By default the Debug variant of foo.exe will be built, you can run it by:

[cgold-example]> ._builds\Debug\foo.exe
Hello from CGold!

Done!

2.6.4. CLI: Xcode

To build an Xcode project from the command line, xcodebuild can be used.
Check it can be found:

> which xcodebuild
/usr/bin/xcodebuild

Go to the _builds directory and run the build tool:

> cd _builds
[cgold-example/_builds]> xcodebuild
...

echo Build\ all\ projects
Build all projects

** BUILD SUCCEEDED **

But CMake offers a cross-tool way to do exactly the same by running cmake --build _builds:

[cgold-example]> cmake --build _builds
...

echo Build\ all\ projects
Build all projects

** BUILD SUCCEEDED **

By default the Debug variant of foo will be built, you can run it by:

[cgold-example]> ./_builds/Debug/foo
Hello from CGold!

Done!

2.6.5. CLI: Make

Usually to build an executable with Make, you need to find the directory with the Makefile
and run make in it:

> cd _builds
[cgold-example/_builds]> make
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

But CMake offers a cross-tool way to do exactly the same by cmake --build _builds:

[cgold-example]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

Run foo:

[cgold-example]> ./_builds/foo
Hello from CGold!

Done!

3. Tutorials

If you reached this section it means you can handle
basic configuration. It’s time to see everything in detail
and add more features.

Note

In provided examples:

	CMake will be run in command-line format but CMake-GUI will work in a similar
way, if behavior differs it will be noted explicitly

	For the host platform Linux is chosen, use analogous commands
if you use another host. E.g. use dir _builds on Windows instead of
ls _builds

	Unix Makefiles will be used as the generator. On *nix platforms this is
the default generator. Peculiarities of other generators will be described explicitly

	3.1. CMake stages
	3.1.1. Configure step

	3.1.2. Generate step

	3.1.3. Build step

	3.2. Out-of-source build
	3.2.1. Multiple configurations

	3.2.2. VCS friendly

	3.2.3. Other notes

	3.3. Workflow
	3.3.1. Makefile example

	3.3.2. Visual Studio example

	3.3.3. UML activity diagram

	3.3.4. Suspicious behavior

	3.4. Version and policies
	3.4.1. cmake_minimum_required

	3.4.2. CMake policies

	3.4.3. Summary

	3.5. Project declaration
	3.5.1. Tools discovering

	3.5.2. Languages

	3.5.3. Variables

	3.5.4. When not declared

	3.5.5. Summary

	3.6. Variables
	3.6.1. Regular variables

	3.6.2. Cache variables

	3.6.3. Environment variables

	3.7. CMake listfiles
	3.7.1. Subdirectories

	3.7.2. Include modules

	3.7.3. Common variables

	3.7.4. Scripts

	3.8. Control structures
	3.8.1. Conditional blocks

	3.8.2. Loops

	3.8.3. Functions

	3.9. Executables
	3.9.1. Simple

	3.9.2. Duplicates

	3.10. Tests
	3.10.1. Multi-config testing

	3.10.2. Verbose output

	3.10.3. Subset of tests

	3.11. Libraries
	3.11.1. Static

	3.11.2. Shared

	3.11.3. Static + shared

	3.11.4. Symbols

	3.12. Pseudo targets
	3.12.1. Imported targets

	3.12.2. Alias targets

	3.12.3. Interface targets

	3.13. Collecting sources
	3.13.1. Avoid globbing

	3.13.2. Project layout

	3.14. Usage requirements
	3.14.1. Compile definitions

	3.14.2. Include directories

	3.14.3. Link libraries

	3.15. Build types
	3.15.1. Detect Multi/Single

	3.16. configure_file

	3.17. Install
	3.17.1. Library

	3.17.2. Header-only library

	3.17.3. Library with dependencies

	3.17.4. Optional dependencies

	3.17.5. CMake modules

	3.17.6. Export header

	3.17.7. RPATH

	3.17.8. Version

	3.17.9. CMAKE_INSTALL_PREFIX

	3.17.10. Layout

	3.17.11. Samples

	3.17.12. Managing dependencies

	3.18. Toolchain
	3.18.1. Globals

	3.19. Generator expressions

	3.20. Properties

	3.21. Packing

	3.22. Continuous integration
	3.22.1. Travis

	3.22.2. AppVeyor

3.1. CMake stages

We start with theory. Let’s introduce some terminology about
CMake commands we have executed before.

3.1.1. Configure step

In this step CMake will parse the top level CMakeLists.txt
of source tree and create a
CMakeCache.txt file populated with
cache variables. Different types of variables will be
described further in detail. For CMake-GUI this step is triggered by clicking
on the Configure button. For CMake command-line this step is combined with
the generate step so terms configure and generate will be used interchangeably.
The end of this step is indicated by the Configuring done message from CMake.

3.1.1.1. GUI + Xcode example

Let’s add a message [https://cmake.org/cmake/help/latest/command/message.html]
command to the example:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

message("Processing CMakeLists.txt")

Examples on GitHub

	Repository [https://github.com/cgold-examples/minimal-with-message]

	Latest ZIP [https://github.com/cgold-examples/minimal-with-message/archive/master.zip]

The line Processing CMakeLists.txt will be printed by CMake when parsing the
CMakeLists.txt file, i.e. on the configure step. Open CMake-GUI, setup directories
and hit Configure:

[image: ../_images/01-configure.png]
You can verify that there is no Xcode project generated yet, but only
CMakeCache.txt with cache variables:

[minimal-with-message-master]> ls _builds
CMakeCache.txt CMakeFiles/

Let’s run configure one more time:

[image: ../_images/02-configure-again.png]
We still see the Process CMakeLists.txt message which means that CMakeLists.txt
was parsed again but there is no check/detect messages. This is because
information about compiler and different tools detection results were saved
in CMake internal directories and reused. You may notice that the second run
happens much faster than the first.

No surprises, there is still no Xcode project:

[minimal-with-message-master]> ls _builds
CMakeCache.txt CMakeFiles/

3.1.2. Generate step

In this step CMake will generate native build tool
files using information from CMakeLists.txt and variables from CMakeCache.txt.
For CMake-GUI this step triggered by clicking on the Generate button.
For CMake command-line this step is combined with the configure step.
The end of this step is indicated by the Generating done message from CMake.

3.1.2.1. GUI + Xcode example

Hit Generate now:

[image: ../_images/03-generate.png]
Now the Xcode project is created:

[minimal-with-message-master]> ls -d _builds/foo.xcodeproj
_builds/foo.xcodeproj/

3.1.2.2. Makefile example

An example of generating a Makefile on Linux:

[minimal-with-message-master]> rm -rf _builds
[minimal-with-message-master]> cmake -H. -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message-master/_builds

We see the Processing CMakeLists.txt, Configuring done and
Generating done messages, meaning that CMakeLists.txt was parsed and
both configure/generate steps were combined into one action.

Verify the Makefile was generated:

[minimal-with-message-master]> ls _builds/Makefile
_builds/Makefile

If you run configure again CMakeLists.txt will be parsed one more time and
Processing CMakeLists.txt will be printed:

[minimal-with-message-master]> cmake -H. -B_builds
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message-master/_builds

3.1.3. Build step

This step is orchestrated by the native build tool. In this step targets of your
project will be built.

3.1.3.1. Xcode example

Run the native tool build:

[minimal-with-message-master]> cmake --build _builds

=== BUILD AGGREGATE TARGET ZERO_CHECK OF PROJECT foo WITH CONFIGURATION Debug ===

Check dependencies

...

=== BUILD TARGET foo OF PROJECT foo WITH CONFIGURATION Debug ===

...

 /.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang -x c++ ...
 -c /.../minimal-with-message-master/foo.cpp
 -o /.../minimal-with-message-master/_builds/foo.build/Debug/foo.build/Objects-normal/x86_64/foo.o

...

 /.../Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang++ ...
 -o /Users/ruslo/minimal-with-message-master/_builds/Debug/foo

=== BUILD AGGREGATE TARGET ALL_BUILD OF PROJECT foo WITH CONFIGURATION Debug ===

...

Build all projects

** BUILD SUCCEEDED **

You can see that foo.cpp was compiled into foo.o and then the executable foo
created. There is no Processing CMakeLists.txt message in the output because during
this stage CMake doesn’t parse CMakeLists.txt, however re-configure may be
triggered on the build step automatically, this will be shown in the
workflow section.

3.1.3.2. Makefile example

Run the native build tool:

[minimal-with-message-master]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

You can see that foo.cpp is compiled into foo.cpp.o and then the executable foo
created. There is no Processing CMakeLists.txt message in the output because during
this stage CMake doesn’t parse CMakeLists.txt, however re-configure may be
triggered on the build step automatically, this will be shown in the
workflow section.

3.2. Out-of-source build

The next important term is “out-of-source build”. “Out-of-source build” is a
good practice of keeping separate the generated files of the
binary tree from the source files of the
source tree. CMake does support the contrary “in-source build”
layout, but such an approach has no real benefit and is not recommended.

3.2.1. Multiple configurations

An out-of-source build allows you to have different configurations simultaneously
without conflicts, e.g. Debug and Release variants:

> cmake -H. -B_builds/Debug -DCMAKE_BUILD_TYPE=Debug
> cmake -H. -B_builds/Release -DCMAKE_BUILD_TYPE=Release

or any other kind of customization, e.g. options:

> cmake -H. -B_builds/feature-on -DFOO_FEATURE=ON
> cmake -H. -B_builds/feature-off -DFOO_FEATURE=OFF

generators:

> cmake -H. -B_builds/xcode -G Xcode
> cmake -H. -B_builds/make -G "Unix Makefiles"

platforms:

> cmake -H. -B_builds/osx -G Xcode
> cmake -H. -B_builds/ios -G Xcode -DCMAKE_TOOLCHAIN_FILE=/.../ios.cmake

3.2.2. VCS friendly

An out-of-source build allows you to ignore temporary binaries by just adding
the _builds directory to the no-tracking-files list:

.gitignore

_builds

compare it with the entries required for an in-source build:

.gitignore

*.sln
*.vcxproj
*.vcxproj.filters
*.xcodeproj
CMakeCache.txt
CMakeFiles
CMakeScripts
Debug/*
Makefile
Win32/*
cmake_install.cmake
foo
foo.build/*
foo.dir/*
foo.exe
x64/*

3.2.3. Other notes

An in-source build at first glance may look more friendly for developers
who are used to storing project/solution files in VCS. But in fact
an out-of-source build will remind you one more time that now your workflow has
changed, CMake is in charge and you should not edit
your project settings in your IDE.

Another note is that using an out-of-source build means that not only do you
need to set cmake -B_builds but also remember that you have to put any
kind of automatically generated files into _builds.
E.g. if you have a C++ template myproject.h.in which is used to generate
myproject.h, then you need to keep myproject.h.in in the source tree
and put myproject.h in the binary tree.

3.3. Workflow

There is a nice feature in CMake that can greatly simplify a
developer’s workflow: The native build tool will watch
the CMake sources for changes and re-run the configure step automatically. In
command-line terms it means that you have to run cmake -H. -B_builds only
once, you don’t need to run configure again after modification of
CMakeLists.txt - you can simply use cmake --build.

3.3.1. Makefile example

Back to the example with message:

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo foo.cpp)

message("Processing CMakeLists.txt")

Examples on GitHub

	Repository [https://github.com/cgold-examples/minimal-with-message]

	Latest ZIP [https://github.com/cgold-examples/minimal-with-message/archive/master.zip]

Generate the Makefile:

[minimal-with-message]> cmake -H. -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message/_builds

And run build:

[minimal-with-message]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

The executable foo is created from the foo.cpp source. The Make tool knows that if
there are no changes in foo.cpp then there is no need to build and link executable again.
If you run build again there will be no compile and link stage:

[minimal-with-message]> cmake --build _builds
[100%] Built target foo

Let’s “modify” the foo.cpp source:

[minimal-with-message]> touch foo.cpp
[minimal-with-message]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

Make detects that the executable foo is out-of-date and rebuilds it. Well, that’s
what build systems are designed for :)

Now let’s “change” CMakeLists.txt. Do we need to run cmake -H. -B_builds
again? The answer is NO - just keep using cmake --build _builds.
CMakeLists.txt is added as a dependent file to the Makefile:

[minimal-with-message]> touch CMakeLists.txt
[minimal-with-message]> cmake --build _builds
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message/_builds
[100%] Built target foo

You see Processing CMakeLists.txt, Configuring done and
Generating done indicating that the CMake code is parsed again and a new Makefile is
generated. Since we didn’t change the way the target foo is built (like adding any
new build flags or compile definitions) there are no compile/link stages.

If you “modify” both the CMake and C++ code you will see the full
configure/generate/build stack of commands:

[minimal-with-message]> touch CMakeLists.txt foo.cpp
[minimal-with-message]> cmake --build _builds
Processing CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimal-with-message/_builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

3.3.2. Visual Studio example

The same is true for other generators as well. For example when you touch
CMakeLists.txt and try to run foo target in Visual Studio:

[image: ../_images/01-reconfigure.png]
The IDE will notify you about an update of the project. You can click “Reload All”
to reload the new configuration:

[image: ../_images/02-notify.png]

3.3.3. UML activity diagram

Activity diagram [http://yed-uml.readthedocs.io/en/latest/activity-diagram.html]
for the workflow described above:

[image: ../_images/workflow.png]

3.3.4. Suspicious behavior

If your workflow doesn’t match the configure-once approach then it may be a
symptom of wrongly written CMake code. Especially when you have to run
cmake -H. -B_builds twice or when cmake --build _builds doesn’t detect
updates that have been made to the CMake code.

CMake issue

	XCode: Real targets do not depend on ZERO_CHECK [https://gitlab.kitware.com/cmake/cmake/issues/14297]

3.4. Version and policies

Like any other piece of software CMake evolves, effectively
introducing new features and deprecating dangerous or confusing behavior.

There are two entities that help you to manage difference between old and new
versions of CMake:

	Command
cmake_minimum_required [https://cmake.org/cmake/help/latest/command/cmake_minimum_required.html]:
for checking what minimum version of CMake user should have to run your
configuration

	CMake policies [https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html]:
for fine tuning newly introduced behavior

If you just want to experiment without worrying about backward compatibility,
policies, warnings, etc. just set first line of CMakeLists.txt to
cmake_minimum_required(VERSION a.b.c) where a.b.c is a current version
of CMake you’re using:

> cmake --version
cmake version 3.5.2

> cat CMakeLists.txt
cmake_minimum_required(VERSION 3.5.2)

3.4.1. cmake_minimum_required

CMake documentation

	cmake_minimum_required [https://cmake.org/cmake/help/latest/command/cmake_minimum_required.html]

What version to put into this command is mostly an executive decision. You
need to know:

	what version is installed on users hosts?

	is it appropriate to ask them to install newer version?

	what features do they need?

	do you need to be backward compatible for one users and have fresh features
for another?

The last case will fit most of them but will harder to maintain for developer
and probably will require automatic testing system with good coverage.

For example the code with version 2.8 as a minimum one and with 3.0
features will look like:

cmake_minimum_required(VERSION 2.8)

if(NOT CMAKE_VERSION VERSION_LESS "3.0") # means 'NOT version < 3.0', i.e. 'version >= 3.0'
 # Code with 3.0 features
endif()

Command cmake_minimum_required must be the first command in your
CMakeLists.txt. If you’re planning to support several
versions of CMake then you need to put the smallest one in
cmake_minimum_required and call it in the first line of CMakeLists.txt.

Even if some commands look harmless, they might not be. For example, project
is the place where a lot of checks happens and where the
toolchain is loaded. If you run this example on Cygwin platform:

project(foo) # BAD CODE! You should check version first!
cmake_minimum_required(VERSION 3.0)

message("Using CMake version ${CMAKE_VERSION}")

CMake will think that you’re running code with old policies and warns you:

[minimum-required-example]> cmake -Hbad -B_builds/bad
-- The C compiler identification is GNU 4.9.3
-- The CXX compiler identification is GNU 4.9.3
CMake Warning at /.../share/cmake-3.3.1/Modules/Platform/CYGWIN.cmake:15 (message):
 CMake no longer defines WIN32 on Cygwin!

 (1) If you are just trying to build this project, ignore this warning or
 quiet it by setting CMAKE_LEGACY_CYGWIN_WIN32=0 in your environment or in
 the CMake cache. If later configuration or build errors occur then this
 project may have been written under the assumption that Cygwin is WIN32.
 In that case, set CMAKE_LEGACY_CYGWIN_WIN32=1 instead.

 (2) If you are developing this project, add the line

 set(CMAKE_LEGACY_CYGWIN_WIN32 0) # Remove when CMake >= 2.8.4 is required

 at the top of your top-level CMakeLists.txt file or set the minimum
 required version of CMake to 2.8.4 or higher. Then teach your project to
 build on Cygwin without WIN32.
Call Stack (most recent call first):
 /.../share/cmake-3.3.1/Modules/CMakeSystemSpecificInformation.cmake:36 (include)
 CMakeLists.txt:1 (project)
...
-- Detecting CXX compile features - done
Using CMake version 3.3.1
...

Fixed version:

cmake_minimum_required(VERSION 3.0)
project(foo)

message("Using CMake version ${CMAKE_VERSION}")

with no warnings:

[minimum-required-example]> cmake -Hgood -B_builds/good
-- The C compiler identification is GNU 4.9.3
-- The CXX compiler identification is GNU 4.9.3
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++.exe
-- Check for working CXX compiler: /usr/bin/c++.exe -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Using CMake version 3.3.1
-- Configuring done
-- Generating done
-- Build files have been written to: /.../minimum-required-example/_builds/good

See also

	CMake issue #17712 [https://gitlab.kitware.com/cmake/cmake/issues/17712#note_371862]

Examples on GitHub

	Repository [https://github.com/cgold-examples/minimum-required-example]

	Latest ZIP [https://github.com/cgold-examples/minimum-required-example/archive/master.zip]

3.4.2. CMake policies

CMake documentation

	CMake policies [https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html]

When a new version of CMake is released, there may be a list of policies describing
cases when behavior changed comparing to the previous CMake version.

Let’s see how it works in practice. In CMake 3.0 policy
CMP0038 [https://cmake.org/cmake/help/latest/policy/CMP0038.html]
was introduced. Before version 3.0, a target could be linked to itself,
which make no sense and definitely is a bug:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

target_link_libraries(foo foo) # BAD CODE! Make no sense

Examples on GitHub

	Repository [https://github.com/cgold-examples/policy-examples]

	Latest ZIP [https://github.com/cgold-examples/policy-examples/archive/master.zip]

Works fine for CMake before 3.0:

[policy-examples]> cmake --version
cmake version 2.8.12.2
[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hbug-2.8 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../policy-examples/_builds

For CMake version >= 3.0 warning will be reported:

[policy-examples]> cmake --version
cmake version 3.5.2
[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hbug-2.8 -B_builds
...
-- Configuring done
CMake Warning (dev) at CMakeLists.txt:4 (add_library):
 Policy CMP0038 is not set: Targets may not link directly to themselves.
 Run "cmake --help-policy CMP0038" for policy details. Use the cmake_policy
 command to set the policy and suppress this warning.

 Target "foo" links to itself.
This warning is for project developers. Use -Wno-dev to suppress it.

-- Generating done
-- Build files have been written to: /.../policy-examples/_builds

Assume you want to drop support for the old version and more to some new
3.0 features. When you set cmake_minimum_required(VERSION 3.0)

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/bug-2.8/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/set-3.0/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required(VERSION 2.8)
+cmake_minimum_required(VERSION 3.0)
 project(foo)

 add_library(foo foo.cpp)

warning turns into error:

[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hset-3.0 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
CMake Error at CMakeLists.txt:4 (add_library):
 Target "foo" links to itself.

-- Generating done
-- Build files have been written to: /.../policy-examples/_builds
[policy-examples]> echo $?
1

Two cases will be shown below. In the first case we want to keep support of
version 2.8 so it will work with both CMake 2.8 and
CMake 3.0+. In the second case we decide to drop support of version 2.8 and move
to CMake 3.0+. We’ll see how it affects the policies. It will be shown
that without using new features from CMake 3.0, it
doesn’t make sense to change cmake_minimum_required.

3.4.2.1. Keep using old

Our project works fine with CMake 2.8 however CMake 3.0+ emits
warning. We don’t want to fix the error now but want only to suppress warning
and explain to CMake that it should behaves like CMake 2.8.

Note

This approach described in
documentation [https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html#introduction]:

It is possible to disable the warning by explicitly requesting the OLD, or
backward compatible behavior using the cmake_policy() command

Let’s add
cmake_policy [https://cmake.org/cmake/help/latest/command/cmake_policy.html]:

cmake_minimum_required(VERSION 2.8)
project(foo)

cmake_policy(SET CMP0038 OLD)

add_library(foo foo.cpp)

target_link_libraries(foo foo) # BAD CODE! Make no sense

Looks good for CMake 3.0+:

[policy-examples]> cmake --version
cmake version 3.5.2
[policy-examples]> rm -rf _builds
[policy-examples]> cmake -Hunknown-2.8 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done

Are we done? No, CMP0038 is introduced since CMake 3.0 so CMake 2.8
have no idea what this policy is about:

> cmake --version
cmake version 2.8.12.2
> rm -rf _builds
> cmake -Hunknown-2.8 -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
CMake Error at CMakeLists.txt:4 (cmake_policy):
 Policy "CMP0038" is not known to this version of CMake.

-- Configuring incomplete, errors occurred!

We should protect new code with if(POLICY CMP0038) condition:

cmake_minimum_required(VERSION 2.8)
project(foo)

if(POLICY CMP0038)
 # Policy CMP0038 introduced since CMake 3.0 so if we want to be compatible
 # with 2.8 (see cmake_minimum_required) we should put 'cmake_policy' under
 # condition.
 cmake_policy(SET CMP0038 OLD)
endif()

add_library(foo foo.cpp)

target_link_libraries(foo foo) # BAD CODE! Make no sense

Of course you should find the time, apply real fix and remove policy logic
since it will not be needed anymore:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/suppress-2.8/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/fix-2.8/CMakeLists.txt
@@ -1,13 +1,4 @@
 cmake_minimum_required(VERSION 2.8)
 project(foo)

-if(POLICY CMP0038)
- # Policy CMP0038 introduced since CMake 3.0 so if we want to be compatible
- # with 2.8 (see cmake_minimum_required) we should put 'cmake_policy' under
- # condition.
- cmake_policy(SET CMP0038 OLD)
-endif()
-
 add_library(foo foo.cpp)
-
-target_link_libraries(foo foo) # BAD CODE! Make no sense

Final version:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

3.4.2.2. Moving to new version

With cmake_minimum_required updated to 3.0, the warning turns into an error.
As a temporary solution, the error can be suppressed by adding a
cmake_policy directive:

cmake_minimum_required(VERSION 3.0)
project(foo)

cmake_policy(SET CMP0038 OLD)

add_library(foo foo.cpp)

target_link_libraries(foo foo) # BAD CODE! Make no sense

Note

We don’t need to protect cmake_policy with if(POLICY)
condition since cmake_minimum_required(VERSION 3.0) guarantee us that
we are using CMake 3.0+.

This policy can then be removed once a better solution is found:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/suppress-3.0/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/fix-3.0/CMakeLists.txt
@@ -1,8 +1,4 @@
 cmake_minimum_required(VERSION 3.0)
 project(foo)

-cmake_policy(SET CMP0038 OLD)
-
 add_library(foo foo.cpp)
-
-target_link_libraries(foo foo) # BAD CODE! Make no sense

Final version:

cmake_minimum_required(VERSION 3.0)
project(foo)

add_library(foo foo.cpp)

You may notice that final version for both cases differs only in cmake_minimum_required:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/fix-2.8/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/policy-examples/fix-3.0/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required(VERSION 2.8)
+cmake_minimum_required(VERSION 3.0)
 project(foo)

 add_library(foo foo.cpp)

It means that there is no much sense in changing cmake_minimum_required
without using any new features.

3.4.3. Summary

	Policies can be used to control CMake behavior

	Policies can be used to suppress warnings/errors

	cmake_minimum_required describe features you use in CMake code

	For backward compatibility new features can be protected with
if(CMAKE_VERSION ...) directive

3.5. Project declaration

Next must-have command is
project [https://cmake.org/cmake/help/latest/command/project.html].
Command project(foo) will set languages to C and C++ (default),
declare some foo_* variables and run basic build tool checks.

CMake documentation

	project [https://cmake.org/cmake/help/latest/command/project.html]

3.5.1. Tools discovering

By default on calling project command CMake will try to detect compilers
for default languages: C and C++. Let’s add some variables and check where
they are defined:

cmake_minimum_required(VERSION 2.8)

message("Before 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

project(Foo)

message("After 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

Examples on GitHub

	Repository [https://github.com/cgold-examples/project-examples]

	Latest ZIP [https://github.com/cgold-examples/project-examples/archive/master.zip]

Run test on Linux:

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hset-compiler -B_builds
Before 'project':
 C: ''
 C++: ''
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
After 'project':
 C: '/usr/bin/cc'
 C++: '/usr/bin/c++'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

CMake will run tests for other tools as well, so try to avoid
checking of anything before project, place all checks
after project declared.

Also project is a place where toolchain file will be read.

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

message("Before 'project'")

project(Foo)

message("After 'project'")

toolchain.cmake

message("Processing toolchain")

[project-examples]> rm -rf _builds
[project-examples]> cmake -Htoolchain -B_builds -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake
Before 'project'
Processing toolchain
Processing toolchain
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
Processing toolchain
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
Processing toolchain
-- Detecting C compiler ABI info - done
-- Detecting C compile features
Processing toolchain
Processing toolchain
Processing toolchain
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
Processing toolchain
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
Processing toolchain
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
Processing toolchain
Processing toolchain
Processing toolchain
-- Detecting CXX compile features - done
After 'project'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

Note

You may notice that toolchain read several times

3.5.2. Languages

If you don’t have or don’t need support for one of the default languages you can
set language explicitly after name of the project. This is how to setup
C-only project:

cmake_minimum_required(VERSION 2.8)

message("Before 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

project(Foo C)

message("After 'project':")
message(" C: '${CMAKE_C_COMPILER}'")
message(" C++: '${CMAKE_CXX_COMPILER}'")

There is no checks for C++ compiler and variable with path to C++ compiler
is empty now:

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hc-compiler -B_builds
Before 'project':
 C: ''
 C++: ''
-- The C compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
After 'project':
 C: '/usr/bin/cc'
 C++: ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

Of course you will not be able to build C++ targets anymore. Since CMake
thinks that *.cpp extension is for C++ sources (by default) there will
be error reported if C++ is not listed (discovering of C++
tools will not be triggered):

cmake_minimum_required(VERSION 2.8)
project(Foo C)

add_library(foo foo.cpp)

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hcpp-not-found -B_builds
-- The C compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Configuring done
CMake Error: Cannot determine link language for target "foo".
CMake Error: CMake can not determine linker language for target: foo
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

We can save some time by using special language NONE when we don’t need any
tools at all:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

No checks for C or C++ compiler as you can see:

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hno-language -B_builds
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

Note

Such form will be used widely in examples in cases when we don’t need to
build targets.

Note

For CMake 3.0+ sub-option LANGUAGES added, since it will be:

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

3.5.3. Variables

Command project declare *_{SOURCE,BINARY}_DIR variables. Since version
3.0 you can add VERSION which additionally declare
*_VERSION_{MAJOR,MINOR,PATCH,TWEAK} variables:

cmake_minimum_required(VERSION 3.0)

message("Before project:")
message(" Source: ${PROJECT_SOURCE_DIR}")
message(" Binary: ${PROJECT_BINARY_DIR}")
message(" Version: ${PROJECT_VERSION}")
message(" Version (alt): ${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}.${PROJECT_VERSION_PATCH}")

project(Foo VERSION 1.2.7)

message("After project:")
message(" Source: ${PROJECT_SOURCE_DIR}")
message(" Binary: ${PROJECT_BINARY_DIR}")
message(" Version: ${PROJECT_VERSION}")
message(" Version (alt): ${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}.${PROJECT_VERSION_PATCH}")

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hvariables -B_builds
Before project:
 Source:
 Binary:
 Version:
 Version (alt): ..
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
After project:
 Source: /.../project-examples/variables
 Binary: /.../project-examples/_builds
 Version: 1.2.7
 Version (alt): 1.2.7
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

You can use alternative foo_{SOURCE,BINARY}_DIRS/
foo_VERSION_{MINOR,MAJOR,PATCH} synonyms. This is useful
when you have hierarchy of projects:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

message("From top level:")
message(" Source (general): ${PROJECT_SOURCE_DIR}")
message(" Source (foo): ${foo_SOURCE_DIR}")

add_subdirectory(boo)

CMakeLists.txt from 'boo' directory

cmake_minimum_required(VERSION 2.8)
project(boo)

message("From subdirectory 'boo':")
message(" Source (general): ${PROJECT_SOURCE_DIR}")
message(" Source (foo): ${foo_SOURCE_DIR}")
message(" Source (boo): ${boo_SOURCE_DIR}")

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hhierarchy -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
From top level:
 Source (general): /.../project-examples/hierarchy
 Source (foo): /.../project-examples/hierarchy
From subdirectory 'boo':
 Source (general): /.../project-examples/hierarchy/boo
 Source (foo): /.../project-examples/hierarchy
 Source (boo): /.../project-examples/hierarchy/boo
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

As you can see we are still able to use foo_* variables even if new
command project(boo) called.

3.5.4. When not declared

CMake will implicitly declare project in case there is no such command
in top-level CMakeLists.txt. This will be equal to calling project
before any other commands. It means that project will be called before
cmake_minimum_required so can lead to problems described in
previous section:

Top level CMakeLists.txt

message("Before 'cmake_minimum_required'")
cmake_minimum_required(VERSION 2.8)

add_subdirectory(boo)

CMakeLists.txt in directory 'boo'

cmake_minimum_required(VERSION 2.8)
project(boo)

[project-examples]> rm -rf _builds
[project-examples]> cmake -Hnot-declared -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Before 'cmake_minimum_required'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../project-examples/_builds

3.5.5. Summary

	You must have project command in your top-level CMakeLists.txt

	Use project to declare non divisible monolithic hierarchy of targets

	Try to minimize the number of instructions before project and verify
that variables are declared in such block of CMake code

3.6. Variables

There are only two kinds of languages: the ones people complain about and

the ones nobody uses.

– Bjarne Stroustrup [https://en.wikiquote.org/wiki/Bjarne_Stroustrup]

We have touched already some simple syntax like dereferencing variable A by
${A} in message command: message("This is A: ${A}"). Cache variables
was mentioned in CMake stages. Here is an
overview of different types of variables with examples.

CMake documentation

	Language: variables [https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#variables]

Examples on GitHub

	Repository [https://github.com/cgold-examples/usage-of-variables]

	Latest ZIP [https://github.com/cgold-examples/usage-of-variables/archive/master.zip]

	3.6.1. Regular variables
	3.6.1.1. Regular vs cache

	3.6.1.2. Scope of variable

	3.6.1.3. New scope

	3.6.1.4. Same scope

	3.6.1.5. Parent scope

	3.6.1.6. From cache

	3.6.1.7. Cache unset regular

	3.6.1.8. Confusing

	3.6.1.9. Names

	3.6.1.10. Quotes

	3.6.1.11. Dereferencing

	3.6.1.12. Nested dereferencing

	3.6.1.13. Types of variable

	3.6.1.14. Create list

	3.6.1.15. Operations with list

	3.6.1.16. List with one empty element

	3.6.1.17. Recommendation

	3.6.1.18. Summary

	3.6.2. Cache variables
	3.6.2.1. No scope

	3.6.2.2. Double set

	3.6.2.3. -D

	3.6.2.4. Initial cache

	3.6.2.5. Force

	3.6.2.6. Force as a workaround

	3.6.2.7. Cache type

	3.6.2.8. Enumerate

	3.6.2.9. Internal

	3.6.2.10. Advanced

	3.6.2.11. Use case

	3.6.2.12. Option

	3.6.2.13. Unset

	3.6.2.14. Recommendation

	3.6.2.15. Summary

	3.6.3. Environment variables
	3.6.3.1. Read

	3.6.3.2. Set

	3.6.3.3. Unset

	3.6.3.4. Inheriting

	3.6.3.5. Configure step

	3.6.3.6. No tracking

	3.6.3.7. Summary

3.6.1. Regular variables

3.6.1.1. Regular vs cache

Unlike cache variables regular (normal) CMake variables
have scope and don’t outlive CMake runs.

If in the next example you run the CMake configure step twice, without removing
the cache:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Regular variable (before): ${abc}")
message("Cache variable (before): ${xyz}")

set(abc "123")
set(xyz "321" CACHE STRING "")

message("Regular variable (after): ${abc}")
message("Cache variable (after): ${xyz}")

[usage-of-variables]> rm -rf _builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before):
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before): 321
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

You can see that the regular CMake variable abc is created from scratch
each time

[usage-of-variables]> rm -rf _builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before):
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before): 321
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

And the cache variable xyz is created only once and reused on second run

[usage-of-variables]> rm -rf _builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before):
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

[usage-of-variables]> cmake -Hcache-vs-regular -B_builds
Regular variable (before):
Cache variable (before): 321
Regular variable (after): 123
Cache variable (after): 321
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

You can find cache variable xyz in CMakeCache.txt:

[usage-of-variables]> grep xyz _builds/CMakeCache.txt
xyz:STRING=321

Unlike regular abc:

[usage-of-variables]> grep abc _builds/CMakeCache.txt
[usage-of-variables]> echo $?
1

3.6.1.2. Scope of variable

Each variable is linked to the scope where it was defined. Commands
add_subdirectory [https://cmake.org/cmake/help/latest/command/add_subdirectory.html]
and
function [https://cmake.org/cmake/help/latest/command/function.html]
introduce their own scopes:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "123")

message("Top level scope (before): ${abc}")

add_subdirectory(boo)

message("Top level scope (after): ${abc}")

CMakeLists.txt from 'boo' directory

set(abc "456")

message("Directory 'boo' scope: ${abc}")

There are two variables abc defined. One in top level scope and another
in scope of boo directory:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdirectory-scope -B_builds
Top level scope (before): 123
Directory 'boo' scope: 456
Top level scope (after): 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.3. New scope

When a new scope is created it will be initialized with the variables of the parent
scope. Command unset [https://cmake.org/cmake/help/latest/command/unset.html]
can remove a variable from the current scope. If a variable is not found in
the current scope it will be dereferenced to an empty string:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo)
 message("[foo]: Scope for function 'foo' copied from parent 'boo': { abc = '${abc}', xyz = '${xyz}' }")
 unset(abc)
 message("[foo]: Command 'unset(abc)' will remove variable from current scope: { abc = '${abc}', xyz = '${xyz}' }")
endfunction()

function(boo)
 message("[boo]: Scope for function 'boo' copied from parent: { abc = '${abc}', xyz = '${xyz}' }")
 set(abc "789")
 message("[boo]: Command 'set(abc ...)' modify current scope, state: { abc = '${abc}', xyz = '${xyz}' }")
 foo()
endfunction()

set(abc "123")
set(xyz "456")

message("Top level scope state: { abc = '${abc}', xyz = '${xyz}' }")

boo()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Htake-from-parent-scope -B_builds
Top level scope state: { abc = '123', xyz = '456' }
[boo]: Scope for function 'boo' copied from parent: { abc = '123', xyz = '456' }
[boo]: Command 'set(abc ...)' modify current scope, state: { abc = '789', xyz = '456' }
[foo]: Scope for function 'foo' copied from parent 'boo': { abc = '789', xyz = '456' }
[foo]: Command 'unset(abc)' will remove variable from current scope: { abc = '', xyz = '456' }
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.4. Same scope

include and macro don’t introduce a new scope, so commands
like set and unset will affect the current scope:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "123")

message("abc (before): ${abc}")
include("./modify-abc.cmake")
message("abc (after): ${abc}")

macro(modify_xyz)
 set(xyz "789")
endmacro()

set(xyz "336")

message("xyz (before): ${xyz}")
modify_xyz()
message("xyz (after): ${xyz}")

modify-abc.cmake module

set(abc "456")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hsame-scope -B_builds
abc (before): 123
abc (after): 456
xyz (before): 336
xyz (after): 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.5. Parent scope

A variable can be set to the parent scope by specifying PARENT_SCOPE:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "") # clear

function(scope_2)
 message("Scope 2 (before): '${abc}'")
 set(abc "786" PARENT_SCOPE)
 message("Scope 2 (after): '${abc}'")
endfunction()

function(scope_1)
 message("Scope 1 (before): '${abc}'")
 scope_2()
 message("Scope 1 (after): '${abc}'")
endfunction()

message("Top level (before): '${abc}'")
scope_1()
message("Top level (after): '${abc}'")

Variable will only be set to parent scope:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hparent-scope -B_builds
Top level (before): ''
Scope 1 (before): ''
Scope 2 (before): ''
Scope 2 (after): ''
Scope 1 (after): '786'
Top level (after): ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Current scope will not be affected:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hparent-scope -B_builds
Top level (before): ''
Scope 1 (before): ''
Scope 2 (before): ''
Scope 2 (after): ''
Scope 1 (after): '786'
Top level (after): ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

As well as parent of the parent:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hparent-scope -B_builds
Top level (before): ''
Scope 1 (before): ''
Scope 2 (before): ''
Scope 2 (after): ''
Scope 1 (after): '786'
Top level (after): ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.6. From cache

If variable is not found in the current scope, it will be taken from
the cache:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "789" CACHE STRING "")
set(a "123")

message("Regular variable from current scope: ${a}")

unset(a)

message("Cache variable if regular not found: ${a}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hfrom-cache -B_builds
Regular variable from current scope: 123
Cache variable if regular not found: 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.7. Cache unset regular

Note that the order of commands is important because set(... CACHE ...)
will remove the regular variable with the same name from current scope:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "123")
set(a "789" CACHE STRING "")

message("Regular variable unset, take from cache: ${a}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-remove-regular -B_builds
Regular variable unset, take from cache: 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.8. Confusing

This may lead to a quite confusing behavior:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(set_abc_globally)
 message("Function scope before cache modify = ${abc}")
 set(abc "789" CACHE STRING "")
 message("Function scope after cache modify = ${abc}")
endfunction()

set(abc "123")

set_abc_globally()

message("Parent scope is not affected, take variable from current scope, not cache = ${abc}")

In this example set(... CACHE ...) will remove abc only from scope of
function and not from top level scope:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-confuse -B_builds
Function scope before cache modify = 123
Function scope after cache modify = 789
Parent scope is not affected, take variable from current scope, not cache = 123
-- Configuring done
-- Generating done
-- build files have been written to: /.../usage-of-variables/_builds

This will be even more confusing if you run this example one more time without
removing cache:

[usage-of-variables]> cmake -Hcache-confuse -B_builds
Function scope before cache modify = 123
Function scope after cache modify = 123
Parent scope is not affected, take variable from current scope, not cache = 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Since variable abc already stored in cache command set(... CACHE ...)
has no effect and will not remove regular abc from scope of function.

3.6.1.9. Names

Variable names are case-sensitive:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "123")
set(b "567")
set(aBc "333")

set(A "321")
set(B "765")
set(ABc "777")

message("a: ${a}")
message("b: ${b}")
message("aBc: ${aBc}")

message("A: ${A}")
message("B: ${B}")
message("ABc: ${ABc}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcase-sensitive -B_builds
a: 123
b: 567
aBc: 333
A: 321
B: 765
ABc: 777
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Name of variable may consist of any characters:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set("abc" "123")
set("ab c" "456")
set("ab?c" "789")
set("/usr/bin/bash" "987")
set("C:\\Program Files\\" "654")
set(" " "321")

function(print_name varname)
 message("Variable name: '${varname}', value: '${${varname}}'")
endfunction()

print_name("abc")
print_name("ab c")
print_name("ab?c")
print_name("/usr/bin/bash")
print_name("C:\\Program Files\\")
print_name(" ")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hany-names -B_builds
Variable name: 'abc', value: '123'
Variable name: 'ab c', value: '456'
Variable name: 'ab?c', value: '789'
Variable name: '/usr/bin/bash', value: '987'
Variable name: 'C:\Program Files\', value: '654'
Variable name: ' ', value: '321'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.10. Quotes

In the previous example, the quote character " was used to create a name containing
a space - this is called quoted argument. Note that the argument must start and end
with a quote character, otherwise it becomes an unquoted argument. In this case, the
quote character will be treated as part of the string:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "Quoted argument")
set(b x-"Unquoted argument")
set(c x"a;b;c")

message("a = '${a}'")
message("b = '${b}'")

message("c =")
foreach(x ${c})
 message(" '${x}'")
endforeach()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hquotes -B_builds
a = 'Quoted argument'
b = 'x-"Unquoted argument"'
c =
 'x"a'
 'b'
 'c"'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

As you can see the variable b contains quotes now and for list c quotes
are part of the elements: x"a, c".

CMake documentation

	Quoted argument [https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#quoted-argument]

	Unquoted argument [https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#unquoted-argument]

3.6.1.11. Dereferencing

Dereferenced variable can be used in creation of new variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "xyz")

set(b "${a}_321")
set(${a}_1 "456")
set(variable_${a} "${a} + ${b} + 155")

message("b: '${b}'")
message("xyz_1: '${xyz_1}'")
message("variable_xyz: '${variable_xyz}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdereference -B_builds
b: 'xyz_321'
xyz_1: '456'
variable_xyz: 'xyz + xyz_321 + 155'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Or new variable name:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "xyz")

set(b "${a}_321")
set(${a}_1 "456")
set(variable_${a} "${a} + ${b} + 155")

message("b: '${b}'")
message("xyz_1: '${xyz_1}'")
message("variable_xyz: '${variable_xyz}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdereference -B_builds
b: 'xyz_321'
xyz_1: '456'
variable_xyz: 'xyz + xyz_321 + 155'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Or even both:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "xyz")

set(b "${a}_321")
set(${a}_1 "456")
set(variable_${a} "${a} + ${b} + 155")

message("b: '${b}'")
message("xyz_1: '${xyz_1}'")
message("variable_xyz: '${variable_xyz}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hdereference -B_builds
b: 'xyz_321'
xyz_1: '456'
variable_xyz: 'xyz + xyz_321 + 155'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.12. Nested dereferencing

Dereferencing of variable by ${...} will happen as many times as needed:

cmake_minimum_required(VERSION 2.8)
project(foo)

foreach(lang C CXX)
 message("Compiler for language ${lang}: ${CMAKE_${lang}_COMPILER}")
 foreach(build_type DEBUG RELEASE RELWITHDEBINFO MINSIZEREL)
 message("Flags for language ${lang} + build type ${build_type}: ${CMAKE_${lang}_FLAGS_${build_type}}")
 endforeach()
endforeach()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hnested-dereference -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
Compiler for language C: /usr/bin/cc
Flags for language C + build type DEBUG: -g
Flags for language C + build type RELEASE: -O3 -DNDEBUG
Flags for language C + build type RELWITHDEBINFO: -O2 -g -DNDEBUG
Flags for language C + build type MINSIZEREL: -Os -DNDEBUG
Compiler for language CXX: /usr/bin/c++
Flags for language CXX + build type DEBUG: -g
Flags for language CXX + build type RELEASE: -O3 -DNDEBUG
Flags for language CXX + build type RELWITHDEBINFO: -O2 -g -DNDEBUG
Flags for language CXX + build type MINSIZEREL: -Os -DNDEBUG
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.1.13. Types of variable

Variables always have type string but some commands can interpret them
differently. For example the command if can treat strings as boolean, path, target
name, etc.:

cmake_minimum_required(VERSION 2.8)
project(foo)

set(condition_a "TRUE")
set(condition_b "NO")

set(path_to_this "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt")

set(target_name foo)
add_library("${target_name}" foo.cpp)

if(condition_a)
 message("condition_a")
else()
 message("NOT condition_a")
endif()

if(condition_b)
 message("condition_b")
else()
 message("NOT condition_b")
endif()

if(EXISTS "${path_to_this}")
 message("File exists: ${path_to_this}")
else()
 message("File not exist: ${path_to_this}")
endif()

if(TARGET "${target_name}")
 message("Target exists: ${target_name}")
else()
 message("Target not exist: ${target_name}")
endif()

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Htypes-of-variable -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
condition_a
NOT condition_b
File exists: /.../usage-of-variables/types-of-variable/CMakeLists.txt
Target exists: foo
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

CMake documentation

	if [https://cmake.org/cmake/help/latest/command/if.html]

3.6.1.14. Create list

Some commands can treat a variable as list. In this case the string
value is split into elements separated by ;.
The command set can create such lists:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(l0 a b c)
set(l1 a;b;c)
set(l2 "a b" "c")
set(l3 "a;b;c")
set(l4 a "b;c")

message("l0 = 'a' + 'b' + 'c' = '${l0}'")
message("l1 = 'a;b;c' = '${l1}'")
message("l2 = 'a b' + 'c' = '${l2}'")
message("l3 = \"'a;b;c'\" = '${l3}'")
message("l4 = 'a' + 'b;c' = '${l4}'")

message("print by message: " ${l3})
message("print by message: " "a" "b" "c")

set creates string from elements and puts the ; between them:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

In case you want to add an element with space you can protect the element
with ":

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

As seen with l4 variable protecting ; with " doesn’t have any
effect:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

We are concatenating string a with string b;c and putting
; between them. Final result is the string a;b;c. When
a command interprets this string as list, such list has 3 elements.
Hence it’s not a list with two elements a and b;c.

The command message interprets l3 as list with 3 elements, so in the end
4 arguments (value of type string) passed as input:
print by message:_, a, b, c. Command message will concatenate
them without any separator, hence string print by message: abc will be
printed:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist -B_builds
l0 = 'a' + 'b' + 'c' = 'a;b;c'
l1 = 'a;b;c' = 'a;b;c'
l2 = 'a b' + 'c' = 'a b;c'
l3 = "'a;b;c'" = 'a;b;c'
l4 = 'a' + 'b;c' = 'a;b;c'
print by message: abc
print by message: abc
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

CMake documentation

	set [https://cmake.org/cmake/help/latest/command/set.html]

3.6.1.15. Operations with list

The list command can be used to calculate length of list, get element by index,
remove elements by index, etc.:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(l0 "a;b;c")
set(l1 "a" "b;c")
set(l2 "a" "b c")

list(LENGTH l0 l0_len)
list(LENGTH l1 l1_len)
list(LENGTH l2 l2_len)

message("length of '${l0}' (l0) = ${l0_len}")
message("length of '${l1}' (l1) = ${l1_len}")
message("length of '${l2}' (l2) = ${l2_len}")

list(GET l1 2 l1_2)
message("l1[2] = ${l1_2}")

message("Removing first item from l1 list: '${l1}'")
list(REMOVE_AT l1 0)
message("l1 = '${l1}'")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hlist-operations -B_builds
length of 'a;b;c' (l0) = 3
length of 'a;b;c' (l1) = 3
length of 'a;b c' (l2) = 2
l1[2] = c
Removing first item from l1 list: 'a;b;c'
l1 = 'b;c'
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

CMake documentation

	list [https://cmake.org/cmake/help/latest/command/list.html]

3.6.1.16. List with one empty element

Since list is really just a string there is no such object as
“list with one empty element”. Empty string is a list with no elements -
length is 0. String ; is a list with two empty elements - length is 2.

Historically result of appending empty element to an empty list is an empty
list:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(add_element list_name element_name)
 message("Add '${${element_name}}' to list '${${list_name}}'")
 list(APPEND "${list_name}" "${${element_name}}")
 list(LENGTH "${list_name}" list_len)
 message("Result: '${${list_name}}' (length = ${list_len})\n")
 set("${list_name}" "${${list_name}}" PARENT_SCOPE)
endfunction()

message("\nAdding non-empty element to non-empty list.\n")
set(mylist "a;b")
set(element "c")
foreach(i RANGE 3)
 add_element(mylist element)
endforeach()

message("\nAdding empty element to non-empty list.\n")
set(mylist "a;b")
set(element "")
foreach(i RANGE 3)
 add_element(mylist element)
endforeach()

message("\nAdding empty element to empty list.\n")
set(mylist "")
set(element "")
foreach(i RANGE 3)
 add_element(mylist element)
endforeach()

[examples]> rm -rf _builds
[examples]> cmake -Husage-of-variables/empty-list -B_builds

Adding non-empty element to non-empty list.

Add 'c' to list 'a;b'
Result: 'a;b;c' (length = 3)

Add 'c' to list 'a;b;c'
Result: 'a;b;c;c' (length = 4)

Add 'c' to list 'a;b;c;c'
Result: 'a;b;c;c;c' (length = 5)

Add 'c' to list 'a;b;c;c;c'
Result: 'a;b;c;c;c;c' (length = 6)

Adding empty element to non-empty list.

Add '' to list 'a;b'
Result: 'a;b;' (length = 3)

Add '' to list 'a;b;'
Result: 'a;b;;' (length = 4)

Add '' to list 'a;b;;'
Result: 'a;b;;;' (length = 5)

Add '' to list 'a;b;;;'
Result: 'a;b;;;;' (length = 6)

Adding empty element to empty list.

Add '' to list ''
Result: '' (length = 0)

Add '' to list ''
Result: '' (length = 0)

Add '' to list ''
Result: '' (length = 0)

Add '' to list ''
Result: '' (length = 0)

-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds

3.6.1.17. Recommendation

Use short laconic lower-case names (a, i, mylist, objects,
etc.) for local variables that used only by the current scope. Use long
detailed upper-case names (FOO_FEATURE, BOO_ENABLE_SOMETHING, etc.)
for variables that used by several scopes.

For example it make no sense to use long names in function since function
has it’s own scope:

function(foo_something)
 set(FOO_SOMETHING_A 1)
 # ...
endfunction()

Using just a will be fine:

function(foo_something)
 set(a 1)
 # ...
endfunction()

Same with scope of CMakeLists.txt:

Foo/CMakeLists.txt

message("Files:")
foreach(FOO_FILES_ITERATOR ${files})
 message(" ${FOO_FILES_ITERATOR}")
endforeach()

Prefer instead:

Foo/CMakeLists.txt

message("Files:")
foreach(x ${files})
 message(" ${x}")
endforeach()

See also

	Cache names

Compare it with C++ code:

// pretty bad idea
#define a

// good one
#define MYPROJECT_ENABLE_A

// does it make sense?
for (int array_iterator = 0; array_iterator < array.size(); ++array_iterator) {
 // use 'array_iterator'
}

// good one
for (int i = 0; i < array.size(); ++i) {
 // use 'i'
}

3.6.1.18. Summary

	All variables have a string type

	List is nothing but string, elements of list separated by ;

	The way how variables are interpreted depends on the command

	Do not give same names for cache and regular variables

	add_subdirectory and function create new scope

	include and macro work in the current scope

3.6.2. Cache variables

Cache variables saved in CMakeCache.txt file:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "687" CACHE STRING "")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-cmakecachetxt -B_builds
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=687

3.6.2.1. No scope

Unlike regular variables CMake cache variables have no scope and
are set globally:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

add_subdirectory(boo)

message("A: ${A}")

CMakeLists.txt from 'boo' directory

set(A "123" CACHE STRING "")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hcache-no-scope -B_builds
A: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.2.2. Double set

If variable is already in cache then command set(... CACHE ...) will have no
effect - old variable will be used still:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(abc "123" CACHE STRING "")
message("Variable from cache: ${abc}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cp double-set/1/CMakeLists.txt double-set/
[usage-of-variables]> cmake -Hdouble-set -B_builds
Variable from cache: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=123

Update CMakeLists.txt (don’t remove cache!):

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/usage-of-variables/double-set/1/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/usage-of-variables/double-set/2/CMakeLists.txt
@@ -1,5 +1,5 @@
 cmake_minimum_required(VERSION 2.8)
 project(foo NONE)

-set(abc "123" CACHE STRING "")
+set(abc "789" CACHE STRING "")
 message("Variable from cache: ${abc}")

[usage-of-variables]> cp double-set/2/CMakeLists.txt double-set/
[usage-of-variables]> cmake -Hdouble-set -B_builds
Variable from cache: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=123

3.6.2.3. -D

Cache variable can be set by -D command line option. Variable that set by
-D option take priority over set(... CACHE ...) command.

[usage-of-variables]> cmake -Dabc=444 -Hdouble-set -B_builds
Variable from cache: 444
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep abc _builds/CMakeCache.txt
abc:STRING=444

3.6.2.4. Initial cache

If there are a lot of variables to set it’s not so convenient to use -D.
In this case user can define all variables in separate file and load
it by -C:

cache.cmake

set(A "123" CACHE STRING "")
set(B "456" CACHE STRING "")
set(C "789" CACHE STRING "")

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("A: ${A}")
message("B: ${B}")
message("C: ${C}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -C initial-cache/cache.cmake -Hinitial-cache -B_builds
loading initial cache file initial-cache/cache.cmake
A: 123
B: 456
C: 789
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.2.5. Force

If you want to set cache variable even if it’s already present in cache file
you can add FORCE:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(A "123" CACHE STRING "" FORCE)
message("A: ${A}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -DA=456 -Hforce -B_builds
A: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

This is quite surprising behavior for user and conflicts with the nature of
cache variables that was designed to store variable once and globally.

Warning

FORCE usually is an indicator of badly designed CMake code.

3.6.2.6. Force as a workaround

FORCE can be used to fix the problem that described
earlier:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(A "123")
set(A "456" CACHE STRING "")

message("A: ${A}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hno-force-confuse -B_builds
A: 456
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> cmake -Hno-force-confuse -B_builds
A: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

With FORCE variable will be set even it’s already present in cache, so
regular variable with the same name will be unset too each time:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(A "123")
set(A "456" CACHE STRING "" FORCE)

message("A: ${A}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hforce-workaround -B_builds
A: 456
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> cmake -Hforce-workaround -B_builds
A: 456
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.2.7. Cache type

Though type of any variable is always string you can add some hints which
will be used by CMake-GUI:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "YES" CACHE BOOL "Variable A")
set(FOO_B "boo/info.txt" CACHE FILEPATH "Variable B")
set(FOO_C "boo/" CACHE PATH "Variable C")
set(FOO_D "abc" CACHE STRING "Variable D")

message("FOO_A (bool): ${FOO_A}")
message("FOO_B (file path): ${FOO_B}")
message("FOO_C (dir path): ${FOO_C}")
message("FOO_D (string): ${FOO_D}")

Run configure:

[image: ../../_images/01-generate.png]
Variable FOO_A will be treated as boolean. Uncheck box and run configure:

[image: ../../_images/02-bool.png]
Variable FOO_B will be treated as path to the file. Click on ...:

[image: ../../_images/03-filepath.png]
Select file:

[image: ../../_images/04-change-filepath.png]
Run configure:

[image: ../../_images/05-ok-filepath.png]
Variable FOO_C will be treated as path to directory. Click on ...:

[image: ../../_images/06-path.png]
Select directory:

[image: ../../_images/07-change-path.png]
Run configure:

[image: ../../_images/08-ok-path.png]
Variable FOO_D will be treated as string. Click near variable name and
edit:

[image: ../../_images/09-string.png]
Run configure:

[image: ../../_images/10-ok-string.png]
Description of variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "YES" CACHE BOOL "Variable A")
set(FOO_B "boo/info.txt" CACHE FILEPATH "Variable B")
set(FOO_C "boo/" CACHE PATH "Variable C")
set(FOO_D "abc" CACHE STRING "Variable D")

message("FOO_A (bool): ${FOO_A}")
message("FOO_B (file path): ${FOO_B}")
message("FOO_C (dir path): ${FOO_C}")
message("FOO_D (string): ${FOO_D}")

Will pop-up as a hint for users:

[image: ../../_images/11-popup-description.png]

CMake documentation

	Cache entry [https://cmake.org/cmake/help/latest/command/set.html#set-cache-entry]

3.6.2.8. Enumerate

Selection widget can be created for variable of string type:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_CRYPTO "OpenSSL" CACHE STRING "Backend for cryptography")

set_property(CACHE FOO_CRYPTO PROPERTY STRINGS "OpenSSL;Libgcrypt;WinCNG")

[image: ../../_images/12-enum.png]

CMake documentation

	STRINGS property [https://cmake.org/cmake/help/latest/prop_cache/STRINGS.html]

3.6.2.9. Internal

Variable with type INTERNAL will not be shown in CMake-GUI (again, real type
is a string still):

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "123" CACHE STRING "")
set(FOO_B "456" CACHE INTERNAL "")
set(FOO_C "789" CACHE STRING "")

[image: ../../_images/13-gui-internal.png]
Also such type of variable implies FORCE:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "123" CACHE INTERNAL "")
set(FOO_A "456" CACHE INTERNAL "")
set(FOO_A "789" CACHE INTERNAL "")

set(FOO_B "123" CACHE STRING "")
set(FOO_B "456" CACHE STRING "")
set(FOO_B "789" CACHE STRING "")

message("FOO_A (internal): ${FOO_A}")
message("FOO_B (string): ${FOO_B}")

Variable FOO_A will be set to 123 then rewritten to 456 because
behavior is similar to variable with FORCE, then one more time to 789,
so final result is 789. Variable FOO_B is a cache variable with no
FORCE so first 123 will be set to cache, then since FOO_B is already
in cache 456 and 789 will be ignored, so final result is 123:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hinternal-force -B_builds
FOO_A (internal): 789
FOO_B (string): 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.2.10. Advanced

If variable is marked as advanced:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "123" CACHE STRING "")
set(FOO_B "456" CACHE STRING "")
set(FOO_C "789" CACHE STRING "")

mark_as_advanced(FOO_B)

it will not be shown in CMake-GUI if Advanced checkbox is not set:

[image: ../../_images/14-gui-no-advanced.png]
[image: ../../_images/15-gui-advanced.png]

CMake documentation

	mark_as_advanced [https://cmake.org/cmake/help/latest/command/mark_as_advanced.html]

3.6.2.11. Use case

The ability of cache variables respect user’s settings fits perfectly for
creating project’s customization option:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(FOO_A "Default value for A" CACHE STRING "")
set(FOO_B "Default value for B")

message("FOO_A: ${FOO_A}")
message("FOO_B: ${FOO_B}")

Default value:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hproject-customization -B_builds
FOO_A: Default value for A
FOO_B: Default value for B
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

User’s value:

[usage-of-variables]> cmake -DFOO_A=User -Hproject-customization -B_builds
FOO_A: User
FOO_B: Default value for B
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Note that such approach doesn’t work for regular CMake variable FOO_B:

[usage-of-variables]> cmake -DFOO_B=User -Hproject-customization -B_builds
FOO_A: User
FOO_B: Default value for B
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.2.12. Option

Command option can be used for creating boolean cache entry:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

option(FOO_A "Option A" OFF)
option(FOO_B "Option B" ON)

message("FOO_A: ${FOO_A}")
message("FOO_B: ${FOO_B}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hoption -B_builds
FOO_A: OFF
FOO_B: ON
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> grep FOO_ _builds/CMakeCache.txt
FOO_A:BOOL=OFF
FOO_B:BOOL=ON

CMake documentation

	option [https://cmake.org/cmake/help/latest/command/option.html]

3.6.2.13. Unset

If you want to remove variable X from cache you need to use
unset(X CACHE). Note that unset(X) will remove regular variable from
current scope and have no effect on cache:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(X "123" CACHE STRING "X variable")
set(X "456")
message("[0] X = ${X}")

unset(X)
message("[1] X = ${X}")

unset(X CACHE)
message("[2] X = ${X}")

option(Y "Y option" ON)
set(Y OFF)
message("[0] Y = ${Y}")

unset(Y)
message("[1] Y = ${Y}")

unset(Y CACHE)
message("[2] Y = ${Y}")

When we have both cache and regular X variables regular variable has
higher priority and will be printed:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Command unset(X) will remove regular variable so cache variable will be
printed:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Command unset(X CACHE) will remove cache variable too. Now no variables
left:

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

Since option do modify cache same logic applied here:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(X "123" CACHE STRING "X variable")
set(X "456")
message("[0] X = ${X}")

unset(X)
message("[1] X = ${X}")

unset(X CACHE)
message("[2] X = ${X}")

option(Y "Y option" ON)
set(Y OFF)
message("[0] Y = ${Y}")

unset(Y)
message("[1] Y = ${Y}")

unset(Y CACHE)
message("[2] Y = ${Y}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Hunset-cache -B_builds
[0] X = 456
[1] X = 123
[2] X =
[0] Y = OFF
[1] Y = ON
[2] Y =
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.2.14. Recommendation

Because of the global nature of cache variables and options
(well it’s cache too) you should do prefix it with the name of the project to
avoid clashing in case several projects are mixed together by
add_subdirectory:

top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(zoo)

add_subdirectory(boo)
add_subdirectory(foo)

foo/CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

option(FOO_FEATURE_1 "Enable feature 1" OFF)
option(FOO_FEATURE_2 "Enable feature 2" OFF)

boo/CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(boo)

option(BOO_FEATURE_1 "Enable feature 1" ON)
option(BOO_FEATURE_2 "Enable feature 2" ON)

See also

	Module names

	Function names

Besides the fact that both features can be set independently now also CMake-GUI
will group them nicely:

[image: ../../_images/grouped.png]

3.6.2.15. Summary

	Use cache to set global variables

	Cache variables fits perfectly for expressing customized options: default
value and respect user’s value

	Type of cache variable helps CMake-GUI users

	Prefixes should be used to avoid clashing because of the global nature of
cache variables

3.6.3. Environment variables

3.6.3.1. Read

Environment variable can be read by using $ENV{...} syntax:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Environment variable USERNAME: $ENV{USERNAME}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> echo $USERNAME
ruslo
[usage-of-variables]> export USERNAME
[usage-of-variables]> cmake -Hread-env -B_builds
Environment variable USERNAME: ruslo
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.3.2. Set

By using set(ENV{...}) syntax CMake can set environment variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(ENV{USERNAME} "Jane Doe")
message("Environment variable USERNAME: $ENV{USERNAME}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> echo $USERNAME
ruslo
[usage-of-variables]> export USERNAME
[usage-of-variables]> cmake -Hset-env -B_builds
Environment variable USERNAME: Jane Doe
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.3.3. Unset

Unset environment variable:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

unset(ENV{USERNAME})
message("Environment variable USERNAME: $ENV{USERNAME}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> echo $USERNAME
ruslo
[usage-of-variables]> export USERNAME
[usage-of-variables]> cmake -Hunset-env -B_builds
Environment variable USERNAME:
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.3.4. Inheriting

Child process will inherit environment variables of parent:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Set environment variable")

set(ENV{ABC} "This is ABC")

message("Top level ABC: $ENV{ABC}")

set(level1 "${CMAKE_CURRENT_LIST_DIR}/level1.cmake")

execute_process(
 COMMAND "${CMAKE_COMMAND}" -P "${level1}" RESULT_VARIABLE result
)

if(NOT result EQUAL 0)
 # Error
endif()

message("Unset environment variable")

unset(ENV{ABC})

message("Top level ABC: $ENV{ABC}")

execute_process(
 COMMAND "${CMAKE_COMMAND}" -P "${level1}" RESULT_VARIABLE result
)

if(NOT result EQUAL 0)
 # Error
endif()

'level1.cmake' script

message("Environment variable from level1: $ENV{ABC}")

set(level2 "${CMAKE_CURRENT_LIST_DIR}/level2.cmake")

execute_process(
 COMMAND "${CMAKE_COMMAND}" -P "${level2}" RESULT_VARIABLE result
)

if(NOT result EQUAL 0)
 # Error
endif()

'level2.cmake' script

message("Environment variable from level2: $ENV{ABC}")

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Henv-inherit -B_builds
Set environment variable
Top level ABC: This is ABC
Environment variable from level1: This is ABC
Environment variable from level2: This is ABC
Unset environment variable
Top level ABC:
Environment variable from level1:
Environment variable from level2:
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

3.6.3.5. Configure step

Note that in previous examples variable was set on
configure step:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(ENV{ABC} "123")

message("Environment variable ABC: $ENV{ABC}")

add_custom_target(
 foo
 ALL
 "${CMAKE_COMMAND}" -P "${CMAKE_CURRENT_LIST_DIR}/script.cmake"
)

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> cmake -Henv-configure -B_builds
Environment variable ABC: 123
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds

But environment variable remains the same on build step:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(ENV{ABC} "123")

message("Environment variable ABC: $ENV{ABC}")

add_custom_target(
 foo
 ALL
 "${CMAKE_COMMAND}" -P "${CMAKE_CURRENT_LIST_DIR}/script.cmake"
)

script.cmake

message("Environment variable from script: $ENV{ABC}")

[usage-of-variables]> cmake --build _builds
Scanning dependencies of target foo
Environment variable from script:
Built target foo

3.6.3.6. No tracking

CMake doesn’t track changes of used environment variables so if your CMake code
depends on environment variable and you’re planning to change it from time to
time it will break normal workflow:

cmake_minimum_required(VERSION 2.8)
project(foo)

set(target_name "$ENV{ABC}-tgt")
add_executable("${target_name}" foo.cpp)

Warning

Do not write code like that!

[usage-of-variables]> rm -rf _builds
[usage-of-variables]> export ABC=abc
[usage-of-variables]> cmake -Henv-depends -B_builds
-- The C compiler identification is GNU 4.8.4
-- The CXX compiler identification is GNU 4.8.4
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> cmake --build _builds
Scanning dependencies of target abc-tgt
[50%] Building CXX object CMakeFiles/abc-tgt.dir/foo.cpp.o
[100%] Linking CXX executable abc-tgt
[100%] Built target abc-tgt

Let’s update environment variable:

[usage-of-variables]> export ABC=123

Name of the target was not changed:

[usage-of-variables]> cmake --build _builds
[100%] Built target abc-tgt

You have to run configure manually yourself:

[usage-of-variables]> cmake -Henv-depends -B_builds
-- Configuring done
-- Generating done
-- Build files have been written to: /.../usage-of-variables/_builds
[usage-of-variables]> cmake --build _builds
Scanning dependencies of target 123-tgt
[50%] Building CXX object CMakeFiles/123-tgt.dir/foo.cpp.o
[100%] Linking CXX executable 123-tgt
[100%] Built target 123-tgt

3.6.3.7. Summary

	CMake can set, unset and read environment variables

	Check carefully configure-build steps where you set environment variables

	Child processes will inherit environment variables of parent

	Do not make your CMake code depends on environment variable if that
variable may change

3.7. CMake listfiles

There are several places where CMake code can live:

	CMakeLists.txt listfiles loaded by add_subdirectory command will help
you to create source/binary tree. This is a skeleton of your project.

	*.cmake modules help you to organize/reuse CMake code.

	CMake scripts can be executed by cmake -P and help you to solve problems
in cross-platform fashion without relying on system specific tools like bash
or without introducing external tool dependency like Python.

Examples on GitHub

	Repository [https://github.com/cgold-examples/cmake-sources]

	Latest ZIP [https://github.com/cgold-examples/cmake-sources/archive/master.zip]

	3.7.1. Subdirectories
	3.7.1.1. Tree

	3.7.1.2. Source variables

	3.7.1.3. Binary tree

	3.7.2. Include modules
	3.7.2.1. Include standard

	3.7.2.2. Include custom

	3.7.2.3. Modify correct

	3.7.2.4. Modify incorrect

	3.7.3. Common variables
	3.7.3.1. CMAKE_CURRENT_LIST_*

	3.7.3.2. CMAKE_CURRENT_LIST_DIR vs CMAKE_CURRENT_SOURCE_DIR

	3.7.3.3. Example

	3.7.3.4. Recommendation

	3.7.4. Scripts
	3.7.4.1. Example

	3.7.4.2. Minimum required (bad)

	3.7.4.3. Minimum required (good)

	3.7.4.4. cmake -E

3.7.1. Subdirectories

3.7.1.1. Tree

CMakeLists.txt loaded by add_subdirectory command
creates a node in a source tree:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Top level CMakeLists.txt")

add_subdirectory(foo)
add_subdirectory(boo)

foo/CMakeLists.txt

message("Processing foo/CMakeList.txt")

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")

add_subdirectory(baz)
add_subdirectory(bar)

boo/bar/CMakeLists.txt

message("Processing boo/bar/CMakeLists.txt")

boo/baz/CMakeLists.txt

message("Processing boo/baz/CMakeLists.txt")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hsimple-tree -B_builds
Top level CMakeLists.txt
Processing foo/CMakeList.txt
Processing boo/CMakeList.txt
Processing boo/baz/CMakeLists.txt
Processing boo/bar/CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

[image: ../../_images/source-tree.png]

3.7.1.2. Source variables

CMAKE_CURRENT_SOURCE_DIR variable will hold a full path to a currently
processed node. Root of the tree is always available in
CMAKE_SOURCE_DIR (see -H):

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Top level CMakeLists.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

add_subdirectory(foo)
add_subdirectory(boo)

foo/CMakeLists.txt

message("Processing foo/CMakeList.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

add_subdirectory(baz)
add_subdirectory(bar)

boo/bar/CMakeLists.txt

message("Processing boo/bar/CMakeLists.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

boo/baz/CMakeLists.txt

message("Processing boo/baz/CMakeLists.txt")
message("CMAKE_SOURCE_DIR: ${CMAKE_SOURCE_DIR}")
message("CMAKE_CURRENT_SOURCE_DIR: ${CMAKE_CURRENT_SOURCE_DIR}")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hsimple-tree-source-vars -B_builds
Top level CMakeLists.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
Processing foo/CMakeList.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/foo
Processing boo/CMakeList.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/boo
Processing boo/baz/CMakeLists.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/boo/baz
Processing boo/bar/CMakeLists.txt
CMAKE_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars
CMAKE_CURRENT_SOURCE_DIR: /.../cmake-sources/simple-tree-source-vars/boo/bar
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

CMake documentation

	CMAKE_SOURCE_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_SOURCE_DIR.html]

	CMAKE_CURRENT_SOURCE_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_SOURCE_DIR.html]

3.7.1.3. Binary tree

Same structure will be replicated in a binary tree.
Information can be taken from CMAKE_BINARY_DIR (see -B) and
CMAKE_CURRENT_BINARY_DIR variables:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Top level CMakeLists.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

add_subdirectory(foo)
add_subdirectory(boo)

foo/CMakeLists.txt

message("Processing foo/CMakeList.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

add_subdirectory(baz)
add_subdirectory(bar)

boo/bar/CMakeLists.txt

message("Processing boo/bar/CMakeLists.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

boo/baz/CMakeLists.txt

message("Processing boo/baz/CMakeLists.txt")
message("CMAKE_BINARY_DIR: ${CMAKE_BINARY_DIR}")
message("CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hsimple-tree-binary-vars -B_builds
Top level CMakeLists.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds
Processing foo/CMakeList.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/foo
Processing boo/CMakeList.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/boo
Processing boo/baz/CMakeLists.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/boo/baz
Processing boo/bar/CMakeLists.txt
CMAKE_BINARY_DIR: /.../cmake-sources/_builds
CMAKE_CURRENT_BINARY_DIR: /.../cmake-sources/_builds/boo/bar
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

[image: ../../_images/with-binary-tree.png]

See also

	Project variables

CMake documentation

	CMAKE_BINARY_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_BINARY_DIR.html]

	CMAKE_CURRENT_BINARY_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_BINARY_DIR.html]

3.7.2. Include modules

CMake modules is a common way to reuse code.

3.7.2.1. Include standard

CMake comes with a set of
standard modules [https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html]:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

include(ProcessorCount)

ProcessorCount(N)
message("Number of processors: ${N}")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hinclude-processor-count -B_builds
Number of processors: 4
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

CMake documentation

	ProcessorCount [https://cmake.org/cmake/help/latest/module/ProcessorCount.html]

Warning

Do not include Find*.cmake modules such way. Find*.cmake modules
designed to be used via
find_package [https://cmake.org/cmake/help/latest/command/find_package.html].

3.7.2.2. Include custom

You can modify a CMAKE_MODULE_PATH variable to add the path with your
custom CMake modules:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/modules")

include(MyModule)

modules/MyModule.cmake

message("Hello from MyModule!")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hinclude-users -B_builds
Hello from MyModule!
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

CMake documentation

	CMAKE_MODULE_PATH [https://cmake.org/cmake/help/latest/variable/CMAKE_MODULE_PATH.html]

3.7.2.2.1. Recommendation

To avoid conflicts of your modules with modules from other projects (if they
are mixed together by add_subdirectory) do “namespace” their names with the
project name:

cmake_minimum_required(VERSION 2.8)
project(foo)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake/Modules")

include(tool_verifier) # BAD! What if a parent project already has 'tool_verifier'?

include(foo_tool_verifier) # Good, includes "./cmake/Modules/foo_tool_verifier.cmake"

See also

	OpenCV modules [https://github.com/opencv/opencv/tree/5f30a0a076e57c412509becd1fb618170cbfa179/cmake]

See also

	Function names

	Cache names

3.7.2.3. Modify correct

Note that the correct way to set this path is to append it to an existing
value:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/modules")

include(ProcessorCount)

ProcessorCount(N)
message("Number of processors: ${N}")

For example when a user wants to use his own modules instead of standard for
any reason:

standard/ProcessorCount.cmake

function(ProcessorCount varname)
 message("Force processor count")
 set("${varname}" 16 PARENT_SCOPE)
endfunction()

Works fine:

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hmodify-path -B_builds "-DCMAKE_MODULE_PATH=`pwd`/modify-path/standard"
Force processor count
Number of processors: 16
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

3.7.2.4. Modify incorrect

It’s not correct to set them ignoring current state:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/modules") # WRONG!

include(ProcessorCount)

ProcessorCount(N)
message("Number of processors: ${N}")

In this case if user want to use custom modules:

standard/ProcessorCount.cmake

function(ProcessorCount varname)
 message("Force processor count")
 set("${varname}" 16 PARENT_SCOPE)
endfunction()

They will not be loaded:

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hmodify-incorrect -B_builds "-DCMAKE_MODULE_PATH=`pwd`/modify-incorrect/standard"
Number of processors: 4
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

3.7.3. Common variables

Since every CMakeLists.txt is a listfile hence the common
listfile variables like CMAKE_CURRENT_LIST_DIR or
CMAKE_CURRENT_LIST_FILE are available. For CMakeLists.txt added by
add_subdirectory there will be no difference between
CMAKE_CURRENT_LIST_DIR and CMAKE_CURRENT_SOURCE_DIR, also
CMAKE_CURRENT_LIST_FILE will be always a full path to CMakeLists.txt.
However it’s not always true for other types of CMake listfiles.

CMake documentation

	CMAKE_CURRENT_LIST_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_DIR.html]

	CMAKE_CURRENT_LIST_FILE [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_FILE.html]

	CMAKE_CURRENT_LIST_LINE [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_LINE.html]

3.7.3.1. CMAKE_CURRENT_LIST_*

Information about any kind of listfile can be taken from
CMAKE_CURRENT_LIST_FILE and CMAKE_CURRENT_LIST_DIR variables:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake")

include(mymodule)

cmake/mymodule.cmake

message("Full path to module: ${CMAKE_CURRENT_LIST_FILE}")
message("Module located in directory: ${CMAKE_CURRENT_LIST_DIR}")

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hpath-to-module -B_builds
Full path to module: /.../cmake-sources/path-to-module/cmake/mymodule.cmake
Module located in directory: /.../cmake-sources/path-to-module/cmake
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

3.7.3.2. CMAKE_CURRENT_LIST_DIR vs CMAKE_CURRENT_SOURCE_DIR

The difference between those two variables is about type of information they
provide. A CMAKE_CURRENT_SOURCE_DIR variable describes a source tree and
should be read as a current source tree directory.
Here is a list of sibling variables describing source/binary trees:

	CMAKE_SOURCE_DIR

	CMAKE_BINARY_DIR

	PROJECT_SOURCE_DIR

	PROJECT_BINARY_DIR

	CMAKE_CURRENT_SOURCE_DIR

	CMAKE_CURRENT_BINARY_DIR

The next files always exist:

	${CMAKE_SOURCE_DIR}/CMakeLists.txt

	${CMAKE_BINARY_DIR}/CMakeCache.txt

	${PROJECT_SOURCE_DIR}/CMakeLists.txt

	${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt

A CMAKE_CURRENT_LIST_DIR variable describes a current listfile (it is not
necessarily CMakeLists.txt, it can be somemodule.cmake), and should
be read as a directory of a currently processed listfile, i.e.
directory of CMAKE_CURRENT_LIST_FILE. Here is another list of sibling
variables:

	CMAKE_CURRENT_LIST_FILE

	CMAKE_CURRENT_LIST_LINE

	CMAKE_CURRENT_LIST_DIR

	CMAKE_PARENT_LIST_FILE

3.7.3.3. Example

Assume we have an external CMake module that calculates SHA1 of CMakeLists.txt
and saves it with some custom info to a sha1 file in a current binary directory:

External module: mymodule.cmake

file(READ "${CMAKE_CURRENT_LIST_DIR}/info/message.txt" _mymodule_message)
file(SHA1 "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt" _mymodule_cmakelists_sha1)
file(
 WRITE
 "${CMAKE_CURRENT_BINARY_DIR}/sha1"
 "${_mymodule_message}\nsha1(CMakeLists.txt) = ${_mymodule_cmakelists_sha1}\n"
)

mymodule.cmake uses some resource. Resource info/message.txt
is a file with content:

Message from external module

To read this resource we must use CMAKE_CURRENT_LIST_DIR because file
located in same external directory as module:

External module: mymodule.cmake

file(READ "${CMAKE_CURRENT_LIST_DIR}/info/message.txt" _mymodule_message)
file(SHA1 "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt" _mymodule_cmakelists_sha1)
file(
 WRITE
 "${CMAKE_CURRENT_BINARY_DIR}/sha1"
 "${_mymodule_message}\nsha1(CMakeLists.txt) = ${_mymodule_cmakelists_sha1}\n"
)

To read CMakeLists.txt we must use CMAKE_CURRENT_SOURCE_DIR because
CMakeLists.txt located in source directory:

External module: mymodule.cmake

file(READ "${CMAKE_CURRENT_LIST_DIR}/info/message.txt" _mymodule_message)
file(SHA1 "${CMAKE_CURRENT_SOURCE_DIR}/CMakeLists.txt" _mymodule_cmakelists_sha1)
file(
 WRITE
 "${CMAKE_CURRENT_BINARY_DIR}/sha1"
 "${_mymodule_message}\nsha1(CMakeLists.txt) = ${_mymodule_cmakelists_sha1}\n"
)

Subdirectory boo uses this module:

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")

add_subdirectory(baz)
add_subdirectory(bar)

include(mymodule)

[cmake-sources]> rm -rf _builds
[cmake-sources]> cmake -Hwith-external-module/example -B_builds -DCMAKE_MODULE_PATH=`pwd`/with-external-module/external
Top level CMakeLists.txt
Processing foo/CMakeList.txt
Processing boo/CMakeList.txt
Processing boo/baz/CMakeLists.txt
Processing boo/bar/CMakeLists.txt
-- Configuring done
-- Generating done
-- Build files have been written to: /.../cmake-sources/_builds

Check a sha1 file created by the module:

[cmake-sources]> cat _builds/boo/sha1
Message from external module

sha1(CMakeLists.txt) = 9f0ceda4ca514a074589fc7591aad0635b6565eb

Verify a value manually:

[cmake-sources]> openssl sha1 with-external-module/example/boo/CMakeLists.txt
SHA1(with-external-module/example/boo/CMakeLists.txt)= 9f0ceda4ca514a074589fc7591aad0635b6565eb

This diagram will make everything clear:

[image: ../../_images/with-external-module.png]

3.7.3.4. Recommendation

Instead of keeping in a head all this information you can remember just two
variables:

	CMAKE_CURRENT_LIST_DIR

	CMAKE_CURRENT_BINARY_DIR

Note that in functions a CMAKE_CURRENT_LIST_DIR variable is set to the
directory where a function is used, not where
a function is defined (see function for details).

Use CMAKE_CURRENT_BINARY_DIR for storing generated files.

Warning

Do not use CMAKE_CURRENT_BINARY_DIR for figuring out the full path
to objects that was build by native tool, e.g. using
${CMAKE_CURRENT_BINARY_DIR}/foo.exe is a bad idea since for Linux
executable will be named ${CMAKE_CURRENT_BINARY_DIR}/foo and for multi-configuration
generators it will be like
${CMAKE_CURRENT_BINARY_DIR}/Debug/foo.exe and really should be determined
on a build step instead of generate step. In such cases
generator expressions is helpful.
For example
$<TARGET_FILE:tgt> [https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html#informational-expressions].

Make sure you fully understand what each variable means in other scenarios:

	CMAKE_SOURCE_DIR/CMAKE_BINARY_DIR these variables point to the root
of the source/binary trees. If your project will be added to another project
as a subproject by add_subdirectory, the locations like
${CMAKE_SOURCE_DIR}/my-resource.txt will point to
<top-level>/my-resource.txt instead of <my-project>/my-resource.txt

	PROJECT_SOURCE_DIR/PROJECT_BINARY_DIR these variables are better
then previous but still have kind of a global nature. You should change all
paths related to PROJECT_SOURCE_DIR if you decide to move declaration of
your project or decide to detach some part of the code and add new
project command in the middle of the source tree. Consider using extra
variable with clean separate purpose for such job
set(FOO_MY_RESOURCES "${CMAKE_CURRENT_LIST_DIR}/resources") instead of
referring to ${PROJECT_SOURCE_DIR}/resources.

	CMAKE_CURRENT_SOURCE_DIR this is a directory with CMakeLists.txt.
If you’re using this variable internally you can substitute it with
CMAKE_CURRENT_LIST_DIR. In case you’re creating module for external usage
consider moving all functionality to function.

With this recommendation previous example can be rewritten in next way:

External module: mymodule.cmake

This is not a part of the function so 'CMAKE_CURRENT_LIST_DIR' is the path
to the directory with 'mymodule.cmake'.
set(MYMODULE_PATH_TO_INFO "${CMAKE_CURRENT_LIST_DIR}/info/message.txt")

function(mymodule)
 # When we are inside function 'CMAKE_CURRENT_LIST_DIR' is the path to the
 # caller, i.e. path to directory with CMakeLists.txt in our case.
 file(SHA1 "${CMAKE_CURRENT_LIST_DIR}/CMakeLists.txt" sha1)

 file(READ "${MYMODULE_PATH_TO_INFO}" msg)
 file(
 WRITE
 "${CMAKE_CURRENT_BINARY_DIR}/sha1"
 "${msg}\nsha1(CMakeLists.txt) = ${sha1}\n"
)
endfunction()

Note

As you may notice we don’t have to use _long_variable names since function
has it’s own scope.

And call a mymodule function instead of including a module:

boo/CMakeLists.txt

message("Processing boo/CMakeList.txt")

add_subdirectory(baz)
add_subdirectory(bar)

mymodule()

Effect is the same:

[cmake-sources]> cat _builds/boo/sha1
Message from external module
sha1(CMakeLists.txt) = 36bcbf5f2f23995661ca4e6349e781160910b71f

[cmake-sources]> openssl sha1 with-external-module-good/example/boo/CMakeLists.txt
SHA1(with-external-module-good/example/boo/CMakeLists.txt)= 36bcbf5f2f23995661ca4e6349e781160910b71f

3.7.4. Scripts

CMake can be used as a cross-platform scripting language.

CMake documentation

	CMake options [https://cmake.org/cmake/help/latest/manual/cmake.1.html#options]

3.7.4.1. Example

Script for creating a file:

create-file.cmake

file(WRITE Hello.txt "Created by script")

Run the script by cmake -P:

[cmake-sources]> rm -f Hello.txt
[cmake-sources]> cmake -P script/create-file.cmake
[cmake-sources]> ls Hello.txt
Hello.txt
[cmake-sources]> cat Hello.txt
Created by script

3.7.4.2. Minimum required (bad)

We should use cmake_minimum_required as the first command in a script just
like with the regular CMakeLists.txt.
Lack of cmake_minimum_required may lead to problems:

script.cmake

set("Jane Doe" "")
set(MYNAME "Jane Doe")

message("MYNAME: ${MYNAME}")

if("${MYNAME}" STREQUAL "")
 message("MYNAME is empty!")
endif()

[cmake-sources]> cmake -P minimum-required-bad/script.cmake
MYNAME: Jane Doe
CMake Warning (dev) at minimum-required-bad/script.cmake:6 (if):
 Policy CMP0054 is not set: Only interpret if() arguments as variables or
 keywords when unquoted. Run "cmake --help-policy CMP0054" for policy
 details. Use the cmake_policy command to set the policy and suppress this
 warning.

 Quoted variables like "Jane Doe" will no longer be dereferenced when the
 policy is set to NEW. Since the policy is not set the OLD behavior will be
 used.
This warning is for project developers. Use -Wno-dev to suppress it.

MYNAME is empty!

3.7.4.3. Minimum required (good)

Same example with cmake_minimum_required works correctly and without
warning:

script.cmake

cmake_minimum_required(VERSION 3.1)

set("Jane Doe" "")
set(MYNAME "Jane Doe")

message("MYNAME: ${MYNAME}")

if("${MYNAME}" STREQUAL "")
 message("MYNAME is empty!")
endif()

[cmake-sources]> cmake -P minimum-required-good/script.cmake
MYNAME: Jane Doe

3.7.4.4. cmake -E

Example of using cmake -E remove_directory instead of native
rm/rmdir commands:

CMake documentation

	Command-Line Tool Mode [https://cmake.org/cmake/help/latest/manual/cmake.1.html#command-line-tool-mode]

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(dir_to_remove "${CMAKE_CURRENT_BINARY_DIR}/__temp")

if(WIN32)
 # 'rmdir' will exit with error if directory doesn't exist
 # so we have to put 'if' here
 if(EXISTS "${dir_to_remove}")
 # need to convert to windows-style path
 file(TO_NATIVE_PATH "${dir_to_remove}" native_path)
 execute_process(
 COMMAND cmd /c rmdir "${native_path}" /S /Q
 RESULT_VARIABLE result
)
 endif()
else()
 # no need to put 'if', 'rm -rf' produce no error if directory doesn't exist
 execute_process(
 COMMAND rm -rf "${dir_to_remove}"
 RESULT_VARIABLE result
)
endif()

if(NOT result EQUAL 0)
 # Error
endif()

Same code with cmake -E:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

execute_process(
 COMMAND "${CMAKE_COMMAND}" -E remove_directory "${CMAKE_CURRENT_BINARY_DIR}/__temp"
 RESULT_VARIABLE result
)

if(NOT result EQUAL 0)
 # Error
endif()

Note

It’s easier to use file(REMOVE_RECURSE ...) in this particular example

3.8. Control structures

Examples on GitHub

	Repository [https://github.com/cgold-examples/control-structures]

	Latest ZIP [https://github.com/cgold-examples/control-structures/archive/master.zip]

3.8.1. Conditional blocks

3.8.1.1. Simple examples

Example of using an if command with NO/YES constants and variables
with NO/YES values:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

if(YES)
 message("Condition 1")
endif()

if(NO)
 message("Condition 2")
endif()

set(A "YES")
set(B "NO")

if(A)
 message("Condition 3")
endif()

if(B)
 message("Condition 4")
endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hif-simple -B_builds
Condition 1
Condition 3
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

Adding else/elseif:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(A "TRUE")
set(B "FALSE")

if(A)
 message("Condition 1")
else()
 message("Condition 2")
endif()

if(B)
 message("Condition 3")
else()
 message("Condition 4")
endif()

set(C "OFF")
set(D "ON")

if(C)
 message("Condition 5")
elseif(D)
 message("Condition 6")
else()
 message("Condition 7")
endif()

set(E "0")
set(F "0")

if(E)
 message("Condition 8")
elseif(F)
 message("Condition 9")
else()
 message("Condition 10")
endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hif-else -B_builds
Condition 1
Condition 4
Condition 6
Condition 10
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.1.2. CMP0054

Some of the if commands accept <variable|string> arguments. This may
lead to quite surprising behavior.

For example if we have a variable A and it is set to an empty string we can
check it with:

set(A "")
if(A STREQUAL "")
 message("Value of A is empty string")
endif()

You can save the name of the variable in another variable and do the same:

set(A "")
set(B "A") # save name of the variable
if(${B} STREQUAL "")
 message("Value of ${B} is an empty string")
endif()

If a CMake policy CMP0054 is set to OLD or not present at all
(before CMake 3.1), this operation ignores quotes:

set(A "")
set(B "A") # save name of the variable
if("${B}" STREQUAL "") # same as 'if(${B} STREQUAL "")'
 message("Value of ${B} is an empty string")
endif()

It means an operation depends on the context: is a variable with the name ${B}
present in current scope or not?

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set(A "Jane Doe")

message("A = ${A}")

if("${A}" STREQUAL "")
 message("A is empty")
endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmp0054-confuse -B_builds
A = Jane Doe
A is empty
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.1.3. Try fix

Since CMake accepts any names of the variables you can’t filter out
<variable> from <variable|string> by adding “reserved” symbols:

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set("xJane Doe" "x")
set("!Jane Doe" "!")
set(" Jane Doe" " ")

set(A "Jane Doe")

message("A = ${A}")

if("x${A}" STREQUAL "x")
 message("A is empty (1)")
endif()

if("!${A}" STREQUAL "!")
 message("A is empty (2)")
endif()

if(" ${A}" STREQUAL " ")
 message("A is empty (3)")
endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Htry-fix -B_builds
A = Jane Doe
A is empty (1)
A is empty (2)
A is empty (3)
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.1.4. Fix

To avoid such issues you should use CMake 3.1 and a CMP0054 policy:

cmake_minimum_required(VERSION 3.1)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set("xJane Doe" "x")
set("!Jane Doe" "!")
set(" Jane Doe" " ")

set(A "Jane Doe")

message("A = ${A}")

if("x${A}" STREQUAL "x")
 message("A is empty (1)")
endif()

if("!${A}" STREQUAL "!")
 message("A is empty (2)")
endif()

if(" ${A}" STREQUAL " ")
 message("A is empty (3)")
endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmp0054-fix -B_builds
A = Jane Doe
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.1.5. Workaround

For CMake before 3.1 as a workaround you can use a string(COMPARE EQUAL ...)
command:

cmake_minimum_required(VERSION 3.0)
project(foo LANGUAGES NONE)

set("Jane Doe" "")
set("xJane Doe" "x")
set("!Jane Doe" "!")
set(" Jane Doe" " ")

set(A "Jane Doe")

message("A = ${A}")

string(COMPARE EQUAL "${A}" "" is_empty)
if(is_empty)
 message("A is empty")
else()
 message("A is not empty")
endif()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmp0054-workaround -B_builds
A = Jane Doe
A is not empty
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.2. Loops

3.8.2.1. foreach

CMake documentation

	foreach [https://cmake.org/cmake/help/latest/command/foreach.html]

Example of a foreach(<variable> <list>) command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Explicit list:")
foreach(item "A" "B" "C")
 message(" ${item}")
endforeach()

message("Dereferenced list:")
set(mylist "foo" "boo" "bar")
foreach(x ${mylist})
 message(" ${x}")
endforeach()

message("Empty list")
foreach(x)
 message(" ${x}")
endforeach()

message("Dereferenced empty list")
set(empty_list)
foreach(x ${empty_list})
 message(" ${x}")
endforeach()

message("List with empty element:")
foreach(i "")
 message(" '${i}'")
endforeach()

message("Separate lists:")
set(mylist a b c)
foreach(x "${mylist}" "x;y;z")
 message(" ${x}")
endforeach()

message("Combined list:")
set(combined_list "${mylist}" "x;y;z")
foreach(x ${combined_list})
 message(" ${x}")
endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hforeach -B_builds
Explicit list:
 A
 B
 C
Dereferenced list:
 foo
 boo
 bar
Empty list
Dereferenced empty list
List with empty element:
 ''
Separate lists:
 a;b;c
 x;y;z
Combined list:
 a
 b
 c
 x
 y
 z
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

As you may notice foreach(x "${mylist}" "x;y;z") is not treated as a
single list but as a list with two elements: ${mylist} and x;y;z.
If you want to merge two lists you should do it explicitly
set(combined_list "${mylist}" "x;y;z") or use
foreach(x ${mylist} x y z) form.

3.8.2.2. foreach with range

Example of usage of a foreach(... RANGE ...) command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Simple range:")
foreach(x RANGE 10)
 message(" ${x}")
endforeach()

message("Range with limits:")
foreach(x RANGE 3 8)
 message(" ${x}")
endforeach()

message("Range with step:")
foreach(x RANGE 10 14 2)
 message(" ${x}")
endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hforeach-range -B_builds
Simple range:
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
Range with limits:
 3
 4
 5
 6
 7
 8
Range with step:
 10
 12
 14
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.2.3. while

Example of usage of a while command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

set(a "")
set(condition TRUE)

message("Loop with condition as variable:")
while(condition)
 set(a "${a}x")
 message(" a = ${a}")
 string(COMPARE NOTEQUAL "${a}" "xxxxx" condition)
endwhile()

set(a "")

message("Loop with explicit condition:")
while(NOT a STREQUAL "xxxxx")
 set(a "${a}x")
 message(" a = ${a}")
endwhile()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hwhile -B_builds
Loop with condition as variable:
 a = x
 a = xx
 a = xxx
 a = xxxx
 a = xxxxx
Loop with explicit condition:
 a = x
 a = xx
 a = xxx
 a = xxxx
 a = xxxxx
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.2.4. break

CMake documentation

	break [https://cmake.org/cmake/help/latest/command/break.html]

Exit from a loop with a break command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

message("Stop 'while' loop:")
set(a "")
while(TRUE)
 set(a "${a}x")
 message(" ${a}")
 string(COMPARE EQUAL "${a}" "xxx" done)
 if(done)
 break()
 endif()
endwhile()

message("Stop 'foreach' loop:")
foreach(x RANGE 10)
 message(" ${x}")
 if(x EQUAL 4)
 break()
 endif()
endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hbreak -B_builds
Stop 'while' loop:
 x
 xx
 xxx
Stop 'foreach' loop:
 0
 1
 2
 3
 4
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.2.5. continue

Since CMake 3.2 it’s possible to continue the loop:

cmake_minimum_required(VERSION 3.2)
project(foo NONE)

message("Loop with 'continue':")
foreach(x RANGE 10)
 if(x EQUAL 2 OR x EQUAL 5)
 message(" skip ${x}")
 continue()
 endif()
 message(" process ${x}")
endforeach()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcontinue -B_builds
Loop with 'continue':
 process 0
 process 1
 skip 2
 process 3
 process 4
 skip 5
 process 6
 process 7
 process 8
 process 9
 process 10
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

CMake documentation

	CMake 3.2 release notes [https://cmake.org/cmake/help/v3.2/release/3.2.html#commands]

3.8.3. Functions

CMake documentation

	function [https://cmake.org/cmake/help/latest/command/function.html]

3.8.3.1. Simple

Function without arguments:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo)
 message("Calling 'foo' function")
endfunction()

foo()
foo()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hsimple-function -B_builds
Calling 'foo' function
Calling 'foo' function
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.3.2. With arguments

Function with arguments and example of ARGV*, ARGC, ARGN usage:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo x y z)
 message("Calling function 'foo':")
 message(" x = ${x}")
 message(" y = ${y}")
 message(" z = ${z}")
endfunction()

function(boo x y z)
 message("Calling function 'boo':")
 message(" x = ${ARGV0}")
 message(" y = ${ARGV1}")
 message(" z = ${ARGV2}")
 message(" total = ${ARGC}")
endfunction()

function(bar x y z)
 message("Calling function 'bar':")
 message(" All = ${ARGV}")
 message(" Unexpected = ${ARGN}")
endfunction()

foo("1" "2" "3")
boo("4" "5" "6")
bar("7" "8" "9" "10" "11")

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hfunction-args -B_builds
Calling function 'foo':
 x = 1
 y = 2
 z = 3
Calling function 'boo':
 x = 4
 y = 5
 z = 6
 total = 3
Calling function 'bar':
 All = 7;8;9;10;11
 Unexpected = 10;11
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.3.3. CMake style

CMake documentation

	CMakeParseArguments [https://cmake.org/cmake/help/latest/module/CMakeParseArguments.html]

cmake_parse_arguments function can be used for parsing:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

include(CMakeParseArguments) # cmake_parse_arguments

function(foo)
 set(optional FOO BOO)
 set(one X Y Z)
 set(multiple L1 L2)

 # Introduce:
 # * x_FOO
 # * x_BOO
 # * x_X
 # * x_Y
 # * x_Z
 # * x_L1
 # * x_L2
 cmake_parse_arguments(x "${optional}" "${one}" "${multiple}" "${ARGV}")

 string(COMPARE NOTEQUAL "${x_UNPARSED_ARGUMENTS}" "" has_unparsed)
 if(has_unparsed)
 message(FATAL_ERROR "Unparsed arguments: ${x_UNPARSED_ARGUMENTS}")
 endif()

 message("FOO: ${x_FOO}")
 message("BOO: ${x_BOO}")
 message("X: ${x_X}")
 message("Y: ${x_Y}")
 message("Z: ${x_Z}")

 message("L1:")
 foreach(item ${x_L1})
 message(" ${item}")
 endforeach()

 message("L2:")
 foreach(item ${x_L2})
 message(" ${item}")
 endforeach()
endfunction()

function(boo)
 set(optional "")
 set(one PARAM1 PARAM2)
 set(multiple "")

 # Introduce:
 # * foo_PARAM1
 # * foo_PARAM2
 cmake_parse_arguments(foo "${optional}" "${one}" "${multiple}" "${ARGV}")

 string(COMPARE NOTEQUAL "${foo_UNPARSED_ARGUMENTS}" "" has_unparsed)
 if(has_unparsed)
 message(FATAL_ERROR "Unparsed arguments: ${foo_UNPARSED_ARGUMENTS}")
 endif()

 message("{ param1, param2 } = { ${foo_PARAM1}, ${foo_PARAM2} }")
endfunction()

message("*** Run (1) ***")
foo(L1 item1 item2 item3 X value FOO)

message("*** Run (2) ***")
foo(L2 item1 item3 Y abc Z 123 FOO BOO)

message("*** Run (3) ***")
foo(L1 item1 L1 item2 L1 item3)

message("*** Run (4) ***")
boo(PARAM1 123 PARAM2 888)

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hcmake-style -B_builds
*** Run (1) ***
FOO: TRUE
BOO: FALSE
X: value
Y:
Z:
L1:
 item1
 item2
 item3
L2:
*** Run (2) ***
FOO: TRUE
BOO: TRUE
X:
Y: abc
Z: 123
L1:
L2:
 item1
 item3
*** Run (3) ***
FOO: FALSE
BOO: FALSE
X:
Y:
Z:
L1:
 item1
 item2
 item3
L2:
*** Run (4) ***
{ param1, param2 } = { 123, 888 }
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.3.4. CMake style limitations

Since it’s not possible to create
a list with one empty element and because of
internal CMakeParseArguments limitations next calls will have equivalent
results:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

include(CMakeParseArguments) # cmake_parse_arguments

function(foo)
 set(optional "")
 set(one X)
 set(multiple "")

 # Introduce:
 # * x_X
 cmake_parse_arguments(x "${optional}" "${one}" "${multiple}" "${ARGV}")

 string(COMPARE NOTEQUAL "${x_UNPARSED_ARGUMENTS}" "" has_unparsed)
 if(has_unparsed)
 message(FATAL_ERROR "Unparsed arguments: ${x_UNPARSED_ARGUMENTS}")
 endif()

 if(DEFINED x_X)
 set(is_defined YES)
 else()
 set(is_defined NO)
 endif()

 message("X is defined: ${is_defined}")
 message("X value: '${x_X}'")
endfunction()

message("*** Run (1) ***")
foo(X "")

message("*** Run (2) ***")
foo(X)

message("*** Run (3) ***")
foo()

[examples]> rm -rf _builds
[examples]> cmake -Hcontrol-structures/cmake-style-limitations -B_builds
*** Run (1) ***
X is defined: NO
X value: ''
*** Run (2) ***
X is defined: NO
X value: ''
*** Run (3) ***
X is defined: NO
X value: ''
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds

3.8.3.5. Return value

There is no special command to return a value from a function. You can set
a variable to the parent scope instead:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(boo)
 set(A "123" PARENT_SCOPE)
endfunction()

set(A "333")
message("Before 'boo': ${A}")
boo()
message("After 'boo': ${A}")

function(bar arg1 result)
 set("${result}" "ABC-${arg1}-XYZ" PARENT_SCOPE)
endfunction()

message("Calling 'bar' with arguments: '123' 'var_out'")
bar("123" var_out)
message("Output: ${var_out}")

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hreturn-value -B_builds
Before 'boo': 333
After 'boo': 123
Calling 'bar' with arguments: '123' 'var_out'
Output: ABC-123-XYZ
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.3.6. Return

CMake documentation

	return [https://cmake.org/cmake/help/latest/command/return.html]

You can exit from a function using a return command:

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

function(foo A B)
 if(A)
 message("Exit on A")
 return()
 endif()

 if(B)
 message("Exit on B")
 return()
 endif()

 message("Exit")
endfunction()

foo(YES NO)
foo(NO YES)
foo(NO NO)

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hreturn -B_builds
Exit on A
Exit on B
Exit
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

3.8.3.7. CMAKE_CURRENT_LIST_DIR

Value of CMAKE_CURRENT_LIST_FILE and CMAKE_CURRENT_LIST_DIR is set
to the file/directory from where the function is called, not the file where
the function is defined:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo NONE)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake/Modules")

include(foo_run)

foo_run("123")

add_subdirectory(boo)

boo/CMakeLists.txt

foo_run("abc")

Module cmake/Modules/foo_run.cmake

set(FOO_RUN_FILE_PATH "${CMAKE_CURRENT_LIST_FILE}")
set(FOO_RUN_DIR_PATH "${CMAKE_CURRENT_LIST_DIR}")

function(foo_run value)
 message("foo_run(${value})")

 message("Called from: ${CMAKE_CURRENT_LIST_DIR}")
 message("Defined in file: ${FOO_RUN_FILE_PATH}")
 message("Defined in directory: ${FOO_RUN_DIR_PATH}")
endfunction()

[control-structures]> rm -rf _builds
[control-structures]> cmake -Hfunction-location -B_builds
foo_run(123)
Called from: /.../control-structures/function-location
Defined in file: /.../control-structures/function-location/cmake/Modules/foo_run.cmake
Defined in directory: /.../control-structures/function-location/cmake/Modules
foo_run(abc)
Called from: /.../control-structures/function-location/boo
Defined in file: /.../control-structures/function-location/cmake/Modules/foo_run.cmake
Defined in directory: /.../control-structures/function-location/cmake/Modules
-- Configuring done
-- Generating done
-- Build files have been written to: /.../control-structures/_builds

CMake documentation

	CMAKE_CURRENT_LIST_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_DIR.html]

	CMAKE_CURRENT_LIST_FILE [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_FILE.html]

3.8.3.8. Recommendation

To avoid function name clashing with functions from another modules do prefix
name with the project name. In case if function name
will match name of the module you can verify that module used in your code
just by simple in-file search (and of course delete it if not):

include(foo_my_module_1)
include(foo_my_module_2)

foo_my_module_1(INPUT1 "abc" INPUT2 123 RESULT result)
foo_my_module_2(INPUT1 "${result}" INPUT2 "xyz")

See also

	Module names

	Cache names

3.9. Executables

Examples on GitHub

	Repository [https://github.com/cgold-examples/executable-examples]

	Latest ZIP [https://github.com/cgold-examples/executable-examples/archive/master.zip]

CMake documentation

	add_executable [https://cmake.org/cmake/help/latest/command/add_executable.html]

3.9.1. Simple

Building executable from main.cpp:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(foo main.cpp)

[executable-examples]> rm -rf _builds
[executable-examples]> cmake -Hsimple -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../executable-examples/_builds
[executable-examples]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/main.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

[executable-examples]> ./_builds/foo
Hello from CGold!

3.9.2. Duplicates

Targets are global, you can’t declare two targets with the same name even
if they are declared in different CMakeLists.txt:

top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_subdirectory(boo)
add_subdirectory(bar)

boo/CMakeLists.txt

add_executable(foo main.cpp)

bar/CMakeLists.txt

add_executable(foo main.cpp)

[examples]> rm -rf _builds
[examples]> cmake -Hexecutable-examples/duplicates -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
CMake Error at bar/CMakeLists.txt:1 (add_executable):
 add_executable cannot create target "foo" because another target with the
 same name already exists. The existing target is an executable created in
 source directory
 "/.../executable-examples/duplicates/boo".
 See documentation for policy CMP0002 for more details.

3.10. Tests

In previous section we have checked that executable is working by finding it
in binary tree and running it explicitly. If we have several executables
or want to run the same executable with different parameters we can organize
everything into test suite driven by CTest tool.

CMake documentation

	ctest [https://cmake.org/cmake/help/latest/manual/ctest.1.html]

	add_test [https://cmake.org/cmake/help/latest/command/add_test.html]

	enable_testing [https://cmake.org/cmake/help/latest/command/enable_testing.html]

Examples on GitHub

	Repository [https://github.com/cgold-examples/test-examples]

	Latest ZIP [https://github.com/cgold-examples/test-examples/archive/master.zip]

Creating two executables:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(boo boo.cpp)
add_executable(bar bar.cpp)

enable_testing()
add_test(NAME boo COMMAND boo)

add_test(NAME bar COMMAND bar)
add_test(NAME bar-with-args COMMAND bar arg1 arg2 arg3)

Executable boo:

#include <iostream> // std::cout

int main() {
 std::cout << "boo" << std::endl;
}

Executable bar:

#include <iostream> // std::cout

int main(int argc, char** argv) {
 std::cout << "bar argc: " << argc << std::endl;
 for (int i=1; i<argc; ++i) {
 std::cout << "argv[" << i << "]: " << argv[i] << std::endl;
 }
}

Testing allowed by enable_testing directive which must be
called in the root directory:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(boo boo.cpp)
add_executable(bar bar.cpp)

enable_testing()
add_test(NAME boo COMMAND boo)

add_test(NAME bar COMMAND bar)
add_test(NAME bar-with-args COMMAND bar arg1 arg2 arg3)

Come up with some tests name and specify executable arguments if needed:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_executable(boo boo.cpp)
add_executable(bar bar.cpp)

enable_testing()
add_test(NAME boo COMMAND boo)

add_test(NAME bar COMMAND bar)
add_test(NAME bar-with-args COMMAND bar arg1 arg2 arg3)

Configure and build project:

[examples]> rm -rf _builds
[examples]> cmake -Htest-examples/simple -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
Scanning dependencies of target boo
[25%] Building CXX object CMakeFiles/boo.dir/boo.cpp.o
[50%] Linking CXX executable boo
[50%] Built target boo
Scanning dependencies of target bar
[75%] Building CXX object CMakeFiles/bar.dir/bar.cpp.o
[100%] Linking CXX executable bar
[100%] Built target bar

Enter _builds directory and use ctest tool to run all tests:

[examples]> cd _builds
[examples/_builds]> ctest
Test project /.../examples/_builds
 Start 1: boo
1/3 Test #1: boo Passed 0.00 sec
 Start 2: bar
2/3 Test #2: bar Passed 0.00 sec
 Start 3: bar-with-args
3/3 Test #3: bar-with-args Passed 0.00 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.02 sec

3.10.1. Multi-config testing

Note that for the
multi-configuration generators
you have to specify build type while running ctest. Otherwise no
tests will be run. Example of Visual Studio project:

[examples_builds]> ctest
Test project C:/.../examples/_builds
 Start 1: boo
Test not available without configuration. (Missing "-C <config>"?)
1/3 Test #1: boo***Not Run 0.00 sec
 Start 2: bar
Test not available without configuration. (Missing "-C <config>"?)
2/3 Test #2: bar***Not Run 0.00 sec
 Start 3: bar-with-args
Test not available without configuration. (Missing "-C <config>"?)
3/3 Test #3: bar-with-args***Not Run 0.00 sec

0% tests passed, 3 tests failed out of 3

Total Test time (real) = 0.02 sec

The following tests FAILED:
 1 - boo (Not Run)
 2 - bar (Not Run)
 3 - bar-with-args (Not Run)
Errors while running CTest

Just add -C Debug to test with Debug build type:

[examples_builds]> ctest -C Debug
Test project C:/.../examples/_builds
 Start 1: boo
1/3 Test #1: boo Passed 0.04 sec
 Start 2: bar
2/3 Test #2: bar Passed 0.02 sec
 Start 3: bar-with-args
3/3 Test #3: bar-with-args Passed 0.01 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.09 sec

3.10.2. Verbose output

By default only Passed/Failed information is shown. You can control
tests output by -V/-VV options:

[examples/_builds]> ctest -VV
...
test 1
 Start 1: boo

1: Test command: /.../examples/_builds/boo
1: Test timeout computed to be: 9.99988e+06
1: boo
1/3 Test #1: boo Passed 0.00 sec
test 2
 Start 2: bar

2: Test command: /.../examples/_builds/bar
2: Test timeout computed to be: 9.99988e+06
2: bar argc: 1
2/3 Test #2: bar Passed 0.00 sec
test 3
 Start 3: bar-with-args

3: Test command: /.../examples/_builds/bar "arg1" "arg2" "arg3"
3: Test timeout computed to be: 9.99988e+06
3: bar argc: 4
3: argv[1]: arg1
3: argv[2]: arg2
3: argv[3]: arg3
3/3 Test #3: bar-with-args Passed 0.00 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 0.01 sec

3.10.3. Subset of tests

It is possible to run only subset of tests instead of all suite. For example
running all tests with bar pattern in name by using regular expression:

[examples/_builds]> ctest -R bar
Test project /.../examples/_builds
 Start 2: bar
1/2 Test #2: bar Passed 0.00 sec
 Start 3: bar-with-args
2/2 Test #3: bar-with-args Passed 0.00 sec

100% tests passed, 0 tests failed out of 2

Total Test time (real) = 0.01 sec

Or only bar test:

[examples/_builds]> ctest -R '^bar$'
Test project /.../examples/_builds
 Start 2: bar
1/1 Test #2: bar Passed 0.00 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.01 sec

3.11. Libraries

	3.11.1. Static

	3.11.2. Shared

	3.11.3. Static + shared
	3.11.3.1. Right way

	3.11.3.2. Install to one directory

	3.11.3.3. Two targets

	3.11.3.4. Summary

	3.11.4. Symbols
	3.11.4.1. Tools

	3.11.4.2. Simple error

	3.11.4.3. ODR violation (local)

	3.11.4.4. ODR violation (global)

	3.11.4.5. Link order

3.11.1. Static

3.11.2. Shared

3.11.3. Static + shared

Those users who has worked with autotools knows that it’s possible to build
both static and shared libraries at one go. Here is an overview how it should
be done in CMake.

Examples on GitHub

	Repository [https://github.com/cgold-examples/library-examples]

	Latest ZIP [https://github.com/cgold-examples/library-examples/archive/master.zip]

3.11.3.1. Right way

We will start with the right one. Command add_library [https://cmake.org/cmake/help/latest/command/add_library.html] should be used without
STATIC or SHARED specifier, type of the library will be determined by
value of BUILD_SHARED_LIBS [https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html] variable (default type is static):

cmake_minimum_required(VERSION 3.4)
project(foo)

set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS YES CACHE BOOL "Export all symbols")

add_library(foo foo.cpp)

install(
 TARGETS foo
 LIBRARY DESTINATION lib
 ARCHIVE DESTINATION lib
 RUNTIME DESTINATION bin
)

Note

STATIC/SHARED/MODULE specifiers should be used only in cases
when other type of library is by design not possible for any reasons.
That’s not our case of course since we are trying to build both variants,
hence library designed to be used as static or shared.

Libraries should be installed to separate directories. So there
will be two builds and two root directories.
Out of source will kindly help us:

> cd library-examples
[library-examples]> rm -rf _builds _install
[library-examples]> cmake -Hright-way -B_builds/shared -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX="`pwd`/_install/configuration-A"
[library-examples]> cmake --build _builds/shared --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX shared library libfoo.so
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../library-examples/_install/configuration-A/lib/libfoo.so

[library-examples]> cmake -Hright-way -B_builds/static -DCMAKE_INSTALL_PREFIX="`pwd`/_install/configuration-B"
[library-examples]> cmake --build _builds/static --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../library-examples/_install/configuration-B/lib/libfoo.a

3.11.3.1.1. Autotools two builds

Note that autotools do build library twice too under the hood, so performance
is the same:

> mkdir temp
> cd temp
[temp]> wget http://www.x.org/releases/individual/lib/libpciaccess-0.13.4.tar.bz2
[temp]> tar xf libpciaccess-0.13.4.tar.bz2
[temp]> cd libpciaccess-0.13.4
[libpciaccess-0.13.4]> ./configure --enable-shared --enable-static
[libpciaccess-0.13.4]> make V=1
...
libtool: compile: gcc ... -c linux_devmem.c -fPIC -o .libs/linux_devmem.o
libtool: compile: gcc ... -c linux_devmem.c -o linux_devmem.o

3.11.3.2. Install to one directory

Another autotools feature is that both libraries will be installed to the one
directory. That’s works fine on Linux since libraries names will be
libfoo.so and libfoo.a, works fine for OSX since libraries names will be
libfoo.dylib and libfoo.a, but not for Windows. Static build will
produce foo.lib:

> cd library-examples
[library-examples]> rmdir _builds _install /S /Q
[library-examples]> cmake -Hright-way -B_builds\static -G "Visual Studio 14 2015" -DCMAKE_INSTALL_PREFIX=%cd%_install
[library-examples]> cmake --build _builds\static --config Release --target install
...
-- Install configuration: "Release"
-- Installing: C:/.../library-examples/_install/lib/foo.lib

But shared build will produce both foo.lib and foo.dll, effectively
overwriting static library and making it unusable:

[library-examples]> cmake -Hright-way -B_builds\shared -G "Visual Studio 14 2015" -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX=%cd%_install
[library-examples]> cmake --build _builds\shared --config Release --target install
...
-- Install configuration: "Release"
-- Installing: C:/.../library-examples/_install/lib/foo.lib
-- Installing: C:/.../library-examples/_install/bin/foo.dll

3.11.3.2.1. Configs

Even if libraries doesn’t conflict on file level their configs will conflict:

> cd library-examples
[library-examples]> rm -rf _install _builds
[library-examples]> cmake -Hbar -B_builds/shared -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
[library-examples]> cmake --build _builds/shared --target install
[library-examples]> grep lib/libbar.so -IR _install
_install/lib/cmake/bar/barTargets-release.cmake: IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/libbar.so"
_install/lib/cmake/bar/barTargets-release.cmake:list(APPEND _IMPORT_CHECK_FILES_FOR_bar::bar "${_IMPORT_PREFIX}/lib/libbar.so")

Config for static variant will have the same barTargets-release.cmake name:

[library-examples]> cmake -Hbar -B_builds/static -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
[library-examples]> cmake --build _builds/static --target install
[library-examples]> grep lib/libbar.a -IR _install
_install/lib/cmake/bar/barTargets-release.cmake: IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/libbar.a"
_install/lib/cmake/bar/barTargets-release.cmake:list(APPEND _IMPORT_CHECK_FILES_FOR_bar::bar "${_IMPORT_PREFIX}/lib/libbar.a")

Now since configuration files for shared variant are overwritten there is
no way to load libbar.so using find_package(bar CONFIG REQUIRED).

[library-examples]> grep lib/libbar.so -IR _install
[library-examples]> echo $?
1

3.11.3.3. Two targets

Problems with two versions of library described in previous section can be
solved by using two different targets. This section cover building of two
targets simultaneously. One target build at the time is equivalent to this code:

add_library(foo foo.cpp)

Even if names differs, e.g. by using option:

option(FOO_STATIC_LIB "Build static library" ON)

if(FOO_STATIC_LIB)
 add_library(foo_static STATIC foo.cpp)
else()
 add_library(foo_shared SHARED foo.cpp)
endif()

Warning

This is logically equivalent to the add_library(foo foo.cpp) +
BUILD_SHARED_LIBS functionality so should not be used.
Use standard CMake features!

So assuming we have code like this:

Don't do that!
add_library(foo_static STATIC foo.cpp)
add_library(foo_shared SHARED foo.cpp)

3.11.3.3.1. Philosophical

CMake code describe abstract configuration. User can choose how this
abstraction used on practice. Let’s run this example on OSX:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)
add_executable(boo boo.cpp)

target_link_libraries(boo PUBLIC foo)

By default we will build executable and static library:

> cd library-examples
[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds
[library-examples]> cmake --build _builds
[library-examples]> ls _builds/libfoo.a _builds/boo
_builds/libfoo.a
_builds/boo

But we are free to switch to shared library:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds -DBUILD_SHARED_LIBS=ON
[library-examples]> cmake --build _builds
[library-examples]> ls _builds/libfoo.dylib _builds/boo
_builds/libfoo.dylib
_builds/boo

Create bundle:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds -DCMAKE_MACOSX_BUNDLE=ON
[library-examples]> cmake --build _builds
[library-examples]> ls -d _builds/libfoo.a _builds/boo.app
_builds/libfoo.a
_builds/boo.app

Or do the both:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hcustom -B_builds -DCMAKE_MACOSX_BUNDLE=ON -DBUILD_SHARED_LIBS=ON
[library-examples]> cmake --build _builds
[library-examples]> ls -d _builds/libfoo.dylib _builds/boo.app
_builds/libfoo.dylib
_builds/boo.app

Forcing any of this violates customization principle.

3.11.3.3.2. Non-default behavior

Let’s see how two targets approach will be used on user’s side:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_subdirectory(boo) # 3rd party library

add_executable(foo foo.cpp)
target_link_libraries(foo PUBLIC boo)

Targets defined in directory boo:

boo/CMakeLists.txt

Don't do that!
add_library(boo STATIC boo.cpp)
add_library(boo_shared SHARED boo.cpp)

User builds library and link by default static libboo.a to foo
executable:

> cd library-examples
[library-examples]> rm -rf _builds
[library-examples]> cmake -Hsurprise -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
[library-examples]> cmake --build _builds
...
/usr/bin/c++ -o foo ... boo/libboo.a

User knows that there is BUILD_SHARED_LIBS variable that change type of
library, so he expects shared in next configuration:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hsurprise -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON -DBUILD_SHARED_LIBS=ON

But of course he still got static because type of library is forced:

[library-examples]> cmake --build _builds
/usr/bin/c++ -o foo ... boo/libboo.a

3.11.3.3.3. Build time

Note that in previous example time of compilation of boo library
is doubled. We are building boo.cpp twice even if we are not
planning to use one of the variants:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hsurprise -B_builds
[library-examples]> cmake --build _builds
Scanning dependencies of target boo
[16%] Building CXX object boo/CMakeFiles/boo.dir/boo.cpp.o
[33%] Linking CXX static library libboo.a
[33%] Built target boo
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[66%] Linking CXX executable foo
[66%] Built target foo
Scanning dependencies of target boo_shared
[83%] Building CXX object boo/CMakeFiles/boo_shared.dir/boo.cpp.o
[100%] Linking CXX shared library libboo_shared.so
[100%] Built target boo_shared

User of such library pays for something he doesn’t really need.

3.11.3.3.4. PIC conflicts

Assume we want to build everything statically but some part of out code
force library to be shared:

cmake_minimum_required(VERSION 2.8)
project(use_bar)

find_package(bar CONFIG REQUIRED)

add_library(use_bar_static STATIC use_bar.cpp)
target_link_libraries(use_bar_static PUBLIC bar::bar)

add_library(use_bar_shared SHARED use_bar.cpp)
target_link_libraries(use_bar_shared PUBLIC bar::bar)

If bar is static we will have problem with target use_bar_shared which
in fact we don’t really interested in:

> cd library-examples
[library-examples]> rm -rf _builds _install
[library-examples]> cmake -Hbar -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
[library-examples]> cmake --build _builds --target install

[library-examples]> rm -rf _builds
[library-examples]> cmake -Huse_bar -B_builds -DCMAKE_PREFIX_PATH="`pwd`/_install"
[library-examples]> cmake --build _builds
Scanning dependencies of target use_bar_shared
[25%] Building CXX object CMakeFiles/use_bar_shared.dir/use_bar.cpp.o
[50%] Linking CXX shared library libuse_bar_shared.so
/usr/bin/ld: /.../library-examples/_install/lib/libbar.a(bar.cpp.o):
 relocation R_X86_64_PC32 against symbol `_Z4bar1v' can not be used when
 making a shared object; recompile with -fPIC

Note

Such issue can’t be solved by library usage requirements since library
bar doesn’t know a priori if will it be linked to shared library or not.

3.11.3.3.5. Scalability

Two targets approach doesn’t scale. If we have add_library(foo foo.cpp) we
can do control of such code:

add_library(foo foo.cpp)
add_executable(boo boo.cpp)
target_link_libraries(boo PUBLIC foo)

Using BUILD_SHARED_LIBS:

	ON - executable linked with shared library

	OFF - executable linked with static library

In this code:

add_library(foo_static STATIC foo.cpp)
add_library(foo_shared SHARED foo.cpp)

What should we do? Create two targets?

add_executable(boo_static boo.cpp)
target_link_libraries(boo_static PUBLIC foo_static)

add_executable(boo_shared boo.cpp)
target_link_libraries(boo_shared PUBLIC foo_shared)

What if there will be more dependencies?

add_library(foo_static STATIC foo.cpp)
add_library(foo_shared SHARED foo.cpp)

add_library(bar_static STATIC foo.cpp)
add_library(bar_shared SHARED foo.cpp)

1 - shared, 0 - static
add_executable(boo_0_0 boo.cpp)
add_executable(boo_0_1 boo.cpp)
add_executable(boo_1_0 boo.cpp)
add_executable(boo_1_1 boo.cpp)

target_link_libraries(boo_0_0 PUBLIC foo_static boo_static)
target_link_libraries(boo_0_1 PUBLIC foo_static boo_shared)
target_link_libraries(boo_1_0 PUBLIC foo_shared boo_static)
target_link_libraries(boo_1_1 PUBLIC foo_shared boo_shared)

3.11.3.3.6. Duplication

Additionally to scalability problems in previous example we have a risk
to have same code repeated twice for system with complex dependencies. Assume
we have library bar in two variants simultaneously:

bar/CMakeLists.txt

Don't do that!
add_library(bar_static STATIC bar.cpp)
add_library(bar_shared SHARED bar.cpp)

And target baz that for some reason decide that shared variant of linkage
is preferable:

baz/CMakeLists.txt

add_library(baz SHARED baz.cpp)
target_link_libraries(baz PUBLIC bar_shared)

Our executable links to both libraries. Probably we don’t know/not interested
in fact that baz use bar too. We decide that static linkage is
preferable for any reason:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_subdirectory(bar)
add_subdirectory(baz)

add_executable(foo foo.cpp)
target_link_libraries(foo PUBLIC bar_static baz)

Let’s build it:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hdup -B_builds
[library-examples]> cmake --build _builds

We are linked to the libbaz.so and we do linked to libbar_shared.so
because it’s dependency of baz:

> ldd _builds/foo
 ...
 libbaz.so => /.../library-examples/_builds/baz/libbaz.so (0x00007f6d2f2a4000)
 libbar_shared.so => /.../library-examples/_builds/bar/libbar_shared.so (0x00007f6d2e927000)

At the same time we have bar linked statically:

> objdump -d _builds/foo | grep -A5 'barv.*:'
0000000000400c12 <_Z3barv>:
 400c12: 55 push %rbp
 400c13: 48 89 e5 mov %rsp,%rbp
 400c16: b8 42 00 00 00 mov $0x42,%eax
 400c1b: 5d pop %rbp
 400c1c: c3 retq

So effectively code of function bar present in our dependencies twice!
First time in executable and second time in linked shared library:

> objdump -d _builds/bar/libbar_shared.so | grep -A5 'barv.*:'
0000000000000610 <_Z3barv>:
 610: 55 push %rbp
 611: 48 89 e5 mov %rsp,%rbp
 614: b8 42 00 00 00 mov $0x42,%eax
 619: 5d pop %rbp
 61a: c3 retq

3.11.3.4. Summary

	Use STATIC/SHARED/MODULE only if library designed
to have no other types

	Use no specifiers if library designed to be used as static or shared.
Respect BUILD_SHARED_LIBS variable

	Install static and shared libraries to separate directories

CMake mailing list

	Static & shared library [https://cmake.org/pipermail/cmake/2005-August/007030.html]

3.11.4. Symbols

In case of diagnosing linker errors or hiding some functions from public usage
it may be helpful to know the table of symbols of library.

	3.11.4.1. Tools
	3.11.4.1.1. Example

	3.11.4.1.2. Linux

	3.11.4.1.3. OSX

	3.11.4.1.4. Windows

	3.11.4.2. Simple error

	3.11.4.3. ODR violation (local)

	3.11.4.4. ODR violation (global)

	3.11.4.5. Link order
	3.11.4.5.1. GNU linker

	3.11.4.5.2. Problem

	3.11.4.5.3. Fix

	3.11.4.5.4. Summary

3.11.4.1. Tools

The tool for listing symbols differs for different platforms.

Examples on GitHub

	Repository [https://github.com/cgold-examples/library-examples]

	Latest ZIP [https://github.com/cgold-examples/library-examples/archive/master.zip]

3.11.4.1.1. Example

Here is an example of library which has both defined and undefined symbols:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(boo Boo.hpp Boo.cpp Foo.hpp)

Method Boo::boo declared and will be defined:

// Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

class Boo {
 public:
 int boo(int, char);
};

#endif // BOO_HPP_

// Boo.cpp

#include "Boo.hpp"

#include "Foo.hpp"

int Boo::boo(int x, char a) {
 Foo foo;

 return foo.foo(a, 1.0 + x);
}

Method Foo::foo declared, will be used but will not be defined:

// Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

class Foo {
 public:
 int foo(char, double);
};

#endif // FOO_HPP_

// Boo.cpp

#include "Boo.hpp"

#include "Foo.hpp"

int Boo::boo(int x, char a) {
 Foo foo;

 return foo.foo(a, 1.0 + x);
}

Build library:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlibrary-symbols -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds

[library-examples]> cmake --build _builds
Scanning dependencies of target boo
[50%] Building CXX object CMakeFiles/boo.dir/Boo.cpp.o
[100%] Linking CXX static library libboo.a
[100%] Built target boo

[library-examples]> ls _builds/libboo.a
_builds/libboo.a

3.11.4.1.2. Linux

Use nm for Linux:

> which nm
/usr/bin/nm

Install instructions for Ubuntu:

> sudo apt-get install binutils

nm --defined-only will show symbols defined by current module.
Add --demangle to beautify output:

[library-examples]> nm --defined-only --demangle _builds/libboo.a

Boo.cpp.o:
0000000000000000 T Boo::boo(int, char)

nm --undefined-only will show undefined:

[library-examples]> nm --undefined-only --demangle _builds/libboo.a

Boo.cpp.o:
 U __stack_chk_fail
 U Foo::foo(char, double)

3.11.4.1.3. OSX

Same nm tool with --defined-only/--undefined-only options can be
used on OSX platform. However --demangle is not available, c++filt
can be used instead:

> which nm
/usr/bin/nm

> which c++filt
/usr/bin/c++filt

Defined symbols:

> nm --defined-only _builds/libboo.a | c++filt

_builds/libboo.a(Boo.cpp.o):
0000000000000000 T Boo::boo(int, char)

Undefined symbols:

> nm --undefined-only _builds/libboo.a | c++filt

_builds/libboo.a(Boo.cpp.o):
Foo::foo(char, double)

3.11.4.1.4. Windows

DUMPBIN tool can help to discover symbols on Windows platform. It’s
available via Developer Command Prompt:

> where dumpbin
...\msvc\2015\VC\bin\dumpbin.exe

Add /SYMBOLS to see the table. Defined symbols can be filtered by
External + SECT:

[library-examples]> dumpbin /symbols _builds\Debug\boo.lib | findstr "External" | findstr "SECT"
00A 00000000 SECT4 notype () External | ?boo@Boo@@QAEHHD@Z (public: int __thiscall Boo::boo(int,char))
01C 00000000 SECT7 notype External | __real@3ff0000000000000

Undefined by External + UNDEF:

[library-examples]> dumpbin /symbols _builds\Debug\boo.lib | findstr "External" | findstr "UNDEF"
00B 00000000 UNDEF notype () External | ?foo@Foo@@QAEHDN@Z (public: int __thiscall Foo::foo(char,double))
00C 00000000 UNDEF notype () External | @_RTC_CheckStackVars@8
00D 00000000 UNDEF notype () External | __RTC_CheckEsp
00E 00000000 UNDEF notype () External | __RTC_InitBase
00F 00000000 UNDEF notype () External | __RTC_Shutdown
019 00000000 UNDEF notype External | __fltused

See also

	DUMPBIN reference [https://msdn.microsoft.com/en-us/library/c1h23y6c.aspx]

	DUMPBIN /SYMBOLS [https://msdn.microsoft.com/en-us/library/b842y285.aspx]

Use /EXPORTS if you want to see the symbols available in DLL:

[library-examples]> dumpbin /exports _builds\Release\boo.dll | findstr "Boo"
 1 0 00001000 ?boo@Boo@@QAEHHD@Z

Use undname to demangle:

[library-examples]> undname ?boo@Boo@@QAEHHD@Z
Microsoft (R) C++ Name Undecorator
Copyright (C) Microsoft Corporation. All rights reserved.

Undecoration of :- "?boo@Boo@@QAEHHD@Z"
is :- "public: int __thiscall Boo::boo(int,char)"

See also

	DUMPBIN /EXPORTS [https://msdn.microsoft.com/en-us/library/30e78zd0.aspx]

	Viewing Decorated Names [https://msdn.microsoft.com/en-us/library/5x49w699.aspx]

3.11.4.2. Simple error

Examples on GitHub

	Repository [https://github.com/cgold-examples/library-examples]

	Latest ZIP [https://github.com/cgold-examples/library-examples/archive/master.zip]

Here is an example of trivial “undefined reference” error with diagnostic and,
of course, fix instructions.

Library boo:

boo/CMakeLists.txt

add_library(boo Boo.hpp Boo.cpp)

// boo/Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

class Boo {
 public:
 int boo(int, int);
};

#endif // BOO_HPP_

// boo/Boo.cpp

#include "boo/Boo.hpp"

int Boo::boo(int, int) {
 return 0x42;
}

Library foo use library boo but since we are trying to trigger an error
the target_link_libraries directive is intentionally missing:

foo/CMakeLists.txt

add_library(foo Foo.cpp Foo.hpp)

// foo/Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

class Foo {
 public:
 int foo(int, char);
};

#endif // FOO_HPP_

// foo/Foo.cpp

#include "foo/Foo.hpp"
#include "boo/Boo.hpp"

int Foo::foo(int, char) {
 Boo boo;
 return boo.boo(14, 15);
}

Final baz executable:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(baz)

include_directories(${CMAKE_CURRENT_LIST_DIR}) # for '#include <boo/Boo.hpp>'

add_subdirectory(boo)
add_subdirectory(foo)

add_executable(baz main.cpp)
target_link_libraries(baz foo)

#include "foo/Foo.hpp"

int main() {
 Foo foo;
 return foo.foo(144, 'x');
}

Generate project:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds

First let’s build library boo:

[library-examples]> cmake --build _builds --target boo
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds
Scanning dependencies of target boo
[50%] Building CXX object boo/CMakeFiles/boo.dir/Boo.cpp.o
[100%] Linking CXX static library libboo.a
[100%] Built target boo

An attempt to build executable baz will fail with link error:

> cmake --build _builds --target baz
Scanning dependencies of target foo
[25%] Building CXX object foo/CMakeFiles/foo.dir/Foo.cpp.o
[50%] Linking CXX static library libfoo.a
[50%] Built target foo
Scanning dependencies of target baz
[75%] Building CXX object CMakeFiles/baz.dir/main.cpp.o
[100%] Linking CXX executable baz
foo/libfoo.a(Foo.cpp.o): In function `Foo::foo(int, char)':
Foo.cpp:(.text+0x35): undefined reference to `Boo::boo(int, int)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:95: recipe for target 'baz' failed
make[3]: *** [baz] Error 1
CMakeFiles/Makefile2:67: recipe for target 'CMakeFiles/baz.dir/all' failed
make[2]: *** [CMakeFiles/baz.dir/all] Error 2
CMakeFiles/Makefile2:79: recipe for target 'CMakeFiles/baz.dir/rule' failed
make[1]: *** [CMakeFiles/baz.dir/rule] Error 2
Makefile:118: recipe for target 'baz' failed
make: *** [baz] Error 2

Use nm tool to verify that symbol is indeed undefined:

> nm --undefined-only --demangle _builds/foo/libfoo.a

Foo.cpp.o:
 U __stack_chk_fail
 U Boo::boo(int, int)

Library boo has it:

> nm --defined-only --demangle _builds/boo/libboo.a

Boo.cpp.o:
0000000000000000 T Boo::boo(int, int)

So library foo depends on library boo, every time we are linking
foo we have to link boo too. This can be expressed by
target_link_libraries command. Fix:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-error/foo/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-error-fix/foo/CMakeLists.txt
@@ -1,3 +1,4 @@
 # foo/CMakeLists.txt

 add_library(foo Foo.cpp Foo.hpp)
+target_link_libraries(foo PUBLIC boo)

Should work now:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error-fix -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../library-examples/_builds

[library-examples]> cmake --build _builds
Scanning dependencies of target boo
[16%] Building CXX object boo/CMakeFiles/boo.dir/Boo.cpp.o
[33%] Linking CXX static library libboo.a
[33%] Built target boo
Scanning dependencies of target foo
[50%] Building CXX object foo/CMakeFiles/foo.dir/Foo.cpp.o
[66%] Linking CXX static library libfoo.a
[66%] Built target foo
Scanning dependencies of target baz
[83%] Building CXX object CMakeFiles/baz.dir/main.cpp.o
[100%] Linking CXX executable baz
[100%] Built target baz

3.11.4.3. ODR violation (local)

Examples on GitHub

	Repository [https://github.com/cgold-examples/library-examples]

	Latest ZIP [https://github.com/cgold-examples/library-examples/archive/master.zip]

The next example is about scenario when badly written CMake code leads to
ODR violation.

Assume we have library boo:

boo/CMakeLists.txt

add_definitions(-DBOO_USE_SHORT_INT) # This is wrong!
add_library(boo Boo.hpp Boo.cpp)

// boo/Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

class Boo {
 public:
#ifdef BOO_USE_SHORT_INT
 typedef short int value_type;
#else
 typedef unsigned long long value_type;
#endif

 static void boo(int, value_type);
};

#endif // BOO_HPP_

// boo/Boo.cpp

#include "boo/Boo.hpp"

void Boo::boo(int, value_type) {
}

Methods of boo used in library foo:

// foo/Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

class Foo {
 public:
 static void foo(int, int);
};

#endif // FOO_HPP_

// foo/Foo.cpp

#include "foo/Foo.hpp"
#include "boo/Boo.hpp"

void Foo::foo(int, int) {
 Boo::value_type x(2);
 return Boo::boo(1, x);
}

foo/CMakeLists.txt

add_library(foo Foo.hpp Foo.cpp)
target_link_libraries(foo PUBLIC boo)

And final executable baz:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(baz)

include_directories(${CMAKE_CURRENT_LIST_DIR}) # for '#include <boo/Boo.hpp>'

add_subdirectory(boo)
add_subdirectory(foo)

add_executable(baz main.cpp)
target_link_libraries(baz foo)

#include "foo/Foo.hpp"

int main() {
 Foo::foo(0, 0);
}

Let’s build the project now:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error-odr-local -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
...
[library-examples]> cmake --build _builds

Link will fail with “undefined reference” error:

/usr/bin/c++ -DBOO_USE_SHORT_INT /.../Boo.cpp
...
/usr/bin/c++ /.../Foo.cpp
...
/usr/bin/c++ -rdynamic CMakeFiles/baz.dir/main.cpp.o -o baz foo/libfoo.a boo/libboo.a
foo/libfoo.a(Foo.cpp.o): In function `Foo::foo(int, int)':
Foo.cpp:(.text+0x23): undefined reference to `Boo::boo(int, unsigned long long)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:99: recipe for target 'baz' failed
make[2]: *** [baz] Error 1

Check symbols we need:

[library-examples]> nm --defined-only --demangle _builds/boo/libboo.a

Boo.cpp.o:
0000000000000000 T Boo::boo(int, short)

Indeed that’s not what we are looking for:

[library-examples]> nm --undefined-only --demangle _builds/foo/libfoo.a

Foo.cpp.o:
 U Boo::boo(int, unsigned long long)

The reason of the failure is that we use BOO_USE_SHORT_INT while building
boo library and not using it while building library foo. Since in both
cases we are loading boo/Boo.hpp header (which depends on
BOO_USE_SHORT_INT) we should define BOO_USE_SHORT_INT in both cases too.
target_compile_definitions [https://cmake.org/cmake/help/latest/command/target_compile_definitions.html]
can help us to solve the issue:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-error-odr-local/boo/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-error-odr-local-fix/boo/CMakeLists.txt
@@ -1,4 +1,4 @@
 # boo/CMakeLists.txt

-add_definitions(-DBOO_USE_SHORT_INT) # This is wrong!
 add_library(boo Boo.hpp Boo.cpp)
+target_compile_definitions(boo PUBLIC "BOO_USE_SHORT_INT")

Links fine now:

[library-examples]> rm -rf _builds
[library-examples]> cmake -Hlink-error-odr-local-fix -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
...
[library-examples]> cmake --build _builds
/usr/bin/c++ -DBOO_USE_SHORT_INT /.../Boo.cpp
...
/usr/bin/c++ -DBOO_USE_SHORT_INT /.../Foo.cpp
...
/usr/bin/c++ -DBOO_USE_SHORT_INT /.../main.cpp
...
/usr/bin/c++ -rdynamic CMakeFiles/baz.dir/main.cpp.o -o baz foo/libfoo.a boo/libboo.a
...
> nm --defined-only --demangle _builds/boo/libboo.a
Boo.cpp.o:
0000000000000000 T Boo::boo(int, short)
> nm --undefined-only --demangle _builds/foo/libfoo.a
Foo.cpp.o:
 U Boo::boo(int, short)

3.11.4.4. ODR violation (global)

Examples on GitHub

	Repository [https://github.com/cgold-examples/library-examples]

	Latest ZIP [https://github.com/cgold-examples/library-examples/archive/master.zip]

Next code shows the ODR violation example based on the same #ifdef
technique but the reason and solution will be different.

Assume we have library boo which can be used with both C++98 and C++11
standards:

// boo/Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

#if __cplusplus >= 201103L
include <thread> // std::thread
#endif

class Boo {
 public:
#if __cplusplus >= 201103L
 typedef std::thread thread_type;
#else
 class InternalThread {
 };
 typedef InternalThread thread_type;
#endif
 static void boo(thread_type&);
};

#endif // BOO_HPP_

// boo/Boo.cpp

#include "boo/Boo.hpp"

#include <iostream> // std::cout

void Boo::boo(thread_type&) {
#if __cplusplus >= 201103L
 std::cout << "Boo: 2011" << std::endl;
#else
 std::cout << "Boo: 1998" << std::endl;
#endif
}

boo/CMakeLists.txt

add_library(boo Boo.hpp Boo.cpp)

Library foo depends on boo:

// foo/Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

class Foo {
 public:
 static int foo();
};

#endif // FOO_HPP_

// foo/Foo.cpp

#include <foo/Foo.hpp>

#include <boo/Boo.hpp>

int Foo::foo() {
 Boo::thread_type t;
 Boo::boo(t);
 return 0;
}

Assuming that library foo use some C++11 features (this fact is not
reflected in C++ code though) first that came to mind is to modify
CXX_STANDARD property:

foo/CMakeLists.txt

add_library(foo Foo.cpp Foo.hpp)
target_link_libraries(foo PUBLIC boo)

set_target_properties(foo PROPERTIES CXX_STANDARD 11)

Final executable:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

include_directories("${CMAKE_CURRENT_LIST_DIR}") # for '#include <boo/Boo.hpp>'

add_subdirectory(boo)
add_subdirectory(foo)

add_executable(baz baz.cpp)
target_link_libraries(baz PUBLIC foo)

// baz.cpp

#include <iostream> // std::cout
#include <foo/Foo.hpp>

int main() {
 std::cout << "Foo: " << Foo::foo() << std::endl;
}

Link will fail for the same reason as with previous example. We are not using
C++11 flags while building boo library but using C++11 flags while building
foo and C++11 flag is analyzed in boo/Boo.hpp which is loaded by
both targets:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-error-odr-global -B_builds
...
[examples]> cmake --build _builds
...
[100%] Linking CXX executable baz
foo/libfoo.a(Foo.cpp.o): In function `Foo::foo()':
Foo.cpp:(.text+0x52): undefined reference to `Boo::boo(std::thread&)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:96: recipe for target 'baz' failed
make[2]: *** [baz] Error 1

Can this issue be fixed using the same approach as
target_compile_definitions(boo PUBLIC "BOO_USE_SHORT_INT")? Note that
if we set set_target_properties(boo PROPERTIES CXX_STANDARD 11) we
can’t use boo with the C++98 targets for the exact same reason, even if
boo is designed to work with both standards.

The main difference here is that BOO_USE_SHORT_INT is local to the
library boo and hence should be controlled locally (as shown before in
CMakeLists.txt of boo library). Meanwhile C++98/C++11 flags are
global and hence should be declared globally somewhere. In our simple case
where all targets connected together in one project, we can add
CMAKE_CXX_STANDARD to the configure step.

Removing local modification of CXX_STANDARD:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-error-odr-global/foo/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-error-odr-global-fix/foo/CMakeLists.txt
@@ -2,5 +2,3 @@

 add_library(foo Foo.cpp Foo.hpp)
 target_link_libraries(foo PUBLIC boo)
-
-set_target_properties(foo PROPERTIES CXX_STANDARD 11)

Building C++11 variant:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-error-odr-global-fix -B_builds -DCMAKE_CXX_STANDARD=11
...
[examples]> cmake --build _builds
...
[examples]> ./_builds/baz
Boo: 2011

Building C++98 variant:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-error-odr-global-fix -B_builds -DCMAKE_CXX_STANDARD=98
...
[examples]> cmake --build _builds
...
[examples]> ./_builds/baz
Boo: 1998

If we have more complex hierarchy of targets which are sequentially
build/installed, we have to use same CMAKE_CXX_STANDARD value for each
participating project. CMAKE_CXX_STANDARD is not the only property with
global nature, it might be helpful to set all such properties/flags in one
place - toolchain.

If you still want to set global flags locally for any reason then at least
put the code under if condition. For example let’s set C++11 for
all targets in the project and C++14 for target boo:

if(NOT EXISTS "${CMAKE_TOOLCHAIN_FILE}")
 set(CMAKE_CXX_STANDARD 11) # set a global minimum standard
 set_target_properties(boo PROPERTIES CXX_STANDARD 14) # set a standard for a target
 # ...
endif()

3.11.4.5. Link order

3.11.4.5.1. GNU linker

This problem occurs only when you’re using GNU linker. From man ld on
Linux:

The linker will search an archive only once, at the location where it is
specified on the command line. If the archive defines a symbol which was
undefined in some object which appeared before the archive on the command
line, the linker will include the appropriate file(s) from the archive.
However, an undefined symbol in an object appearing later on the command
line will not cause the linker to search the archive again.

There is no such issue on OSX for example, quote from man ld:

ld will only pull .o files out of a static library if needed to resolve
some symbol reference. Unlike traditional linkers, ld will continually
search a static library while linking. There is no need to specify a
static library multiple times on the command line.

Example tested on Linux with GCC compiler and standard ld linker:

> ld --version
GNU ld (GNU Binutils for Ubuntu) 2.26.1
Copyright (C) 2015 Free Software Foundation, Inc.
This program is free software; you may redistribute it under the terms of
the GNU General Public License version 3 or (at your option) a later version.
This program has absolutely no warranty.

> gcc --version
gcc (Ubuntu 5.4.1-2ubuntu1~16.04) 5.4.1 20160904
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

3.11.4.5.2. Problem

Example with two libraries bar, boo and executable foo:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(bar bar.cpp)
add_library(boo boo.cpp)

add_executable(foo foo.cpp)
target_link_libraries(foo PUBLIC bar boo)

Library bar doesn’t depend on anything and define function int bar():

// bar.cpp

int bar() {
 return 0x42;
}

Library boo depends on bar and define function int boo():

// boo.cpp

int bar();

int boo() {
 return bar();
}

Executable foo depends on boo:

// foo.cpp

int boo();

int main() {
 return boo();
}

Build will fail with linker error:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-order-bad -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
...
[16%] Building CXX object CMakeFiles/bar.dir/bar.cpp.o
/usr/bin/c++ -o CMakeFiles/bar.dir/bar.cpp.o -c /.../examples/library-examples/link-order-bad/bar.cpp
[33%] Linking CXX static library libbar.a
...
/usr/bin/ar qc libbar.a CMakeFiles/bar.dir/bar.cpp.o
/usr/bin/ranlib libbar.a
[33%] Built target bar
...
[50%] Building CXX object CMakeFiles/boo.dir/boo.cpp.o
/usr/bin/c++ -o CMakeFiles/boo.dir/boo.cpp.o -c /.../examples/library-examples/link-order-bad/boo.cpp
[66%] Linking CXX static library libboo.a
...
/usr/bin/ar qc libboo.a CMakeFiles/boo.dir/boo.cpp.o
/usr/bin/ranlib libboo.a
[66%] Built target boo
...
[83%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
/usr/bin/c++ -o CMakeFiles/foo.dir/foo.cpp.o -c /.../examples/library-examples/link-order-bad/foo.cpp
[100%] Linking CXX executable foo
...
/usr/bin/c++ -rdynamic CMakeFiles/foo.dir/foo.cpp.o -o foo libbar.a libboo.a
libboo.a(boo.cpp.o): In function `boo()':
boo.cpp:(.text+0x5): undefined reference to `bar()'
collect2: error: ld returned 1 exit status
...

Note that linker can’t find symbol int bar() from bar library even
if libbar.a is present in command line.

To understand the reason of error you have to understand how linker works:

	All files passed to linker processed from left to right

	Linker collects undefined symbols from files to the pool of undefined
symbols

	If object from archive doesn’t resolve any symbols from pool of undefined
symbols, then it dropped

Next thing happens in example above:

	3 files passed to linker to create final foo executable:

	object CMakeFiles/foo.dir/foo.cpp.o

	archive libbar.a

	archive libboo.a

	CMakeFiles/foo.dir/foo.cpp.o has undefined symbol int boo().
Current pool of undefined symbols is int boo()

	Archive libbar.a defines int bar(), doesn’t have any undefined
symbols and doesn’t resolve any symbols from pool. Hence we drop it.
Current pool of undefined symbols is int boo()

	Archive libboo.a defines int boo() and has undefined symbol
int bar(). int boo() removed from pool and int bar() added.
Current pool of undefined symbols is int bar()

	No files left. Pool of undefined symbols is not empty and error about
unresolved int bar() symbol reported.

3.11.4.5.3. Fix

To fix this you should declare dependency between boo and bar:

--- /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-order-bad/CMakeLists.txt
+++ /home/docs/checkouts/readthedocs.org/user_builds/cgold/checkouts/latest/docs/examples/library-examples/link-order-fix/CMakeLists.txt
@@ -5,6 +5,7 @@

 add_library(bar bar.cpp)
 add_library(boo boo.cpp)
+target_link_libraries(boo PUBLIC bar)

 add_executable(foo foo.cpp)
-target_link_libraries(foo PUBLIC bar boo)
+target_link_libraries(foo PUBLIC boo)

This approach both clean (foo doesn’t explicitly depends on bar, why
target_link_libraries(foo PUBLIC bar) used?) and correct - CMake will
control the right order of files:

[examples]> rm -rf _builds
[examples]> cmake -Hlibrary-examples/link-order-fix -B_builds -DCMAKE_VERBOSE_MAKEFILE=ON
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
...
/usr/bin/c++ -rdynamic CMakeFiles/foo.dir/foo.cpp.o -o foo libboo.a libbar.a
make[2]: Leaving directory '/.../examples/_builds'
[100%] Built target foo
make[1]: Leaving directory '/.../examples/_builds'
/.../bin/cmake -E cmake_progress_start /.../examples/_builds/CMakeFiles 0

3.11.4.5.4. Summary

	If one library depends on symbols from other library you have to express it
by target_link_libraries command. Even if you may not have problems
in current setup they may appear later or on another platform.

	If you have “undefined reference” error even if library with missing symbols
is present in command line, then it may means that the order is not correct.
Fix it by adding target_link_libraries(boo PUBLIC bar), where boo
is library with unresolved symbols and bar is library which defines
those symbols.

3.12. Pseudo targets

	3.12.1. Imported targets

	3.12.2. Alias targets

	3.12.3. Interface targets

3.12.1. Imported targets

3.12.2. Alias targets

3.12.3. Interface targets

3.13. Collecting sources

	3.13.1. Avoid globbing

	3.13.2. Project layout

3.13.1. Avoid globbing

3.13.2. Project layout

Examples on GitHub

	Repository [https://github.com/cgold-examples/fruits]

	Latest ZIP [https://github.com/cgold-examples/fruits/archive/master.zip]

	lib/

	<project>/

	<project>.hpp

	
	<target>/

	CMakeLists.txt with target <project>_<target>

	<target>.hpp

	app/

	<project>/

	<target>/

	CMakeLists.txt with target <project>_<target>

	test/

	<project>/

	<target>/

	CMakeLists.txt with target <project>_<target>

	example/

	<project>/

	<target>/

	CMakeLists.txt with target <project>_<target>

	cmake/

	module/

	<project>_<module>.cmake

	template/

	*.cmake.in

	script/

	*.cmake

	include/

	*.cmake

	try_compile/

	*.cpp

See also

	Install layout

├── CMakeLists.txt
├── lib/
│ ├── CMakeLists.txt
│ └── fruits/
│ ├── CMakeLists.txt
│ ├── fruits.hpp
│ ├── rosaceae/
│ │ ├── CMakeLists.txt
│ │ ├── rosaceae.hpp
│ │ ├── Pear.cpp
│ │ ├── Pear.hpp
│ │ ├── Plum.cpp
│ │ ├── Plum.hpp
│ │ └── unittest/
│ │ └── Pear.cpp
│ └── tropical/
│ ├── CMakeLists.txt
│ ├── tropical.hpp
│ ├── Avocado.cpp
│ ├── Avocado.hpp
│ ├── Pineapple.cpp
│ ├── Pineapple.hpp
│ └── unittest/
│ ├── Avocado.cpp
│ └── Pineapple.cpp
├── app/
│ ├── CMakeLists.txt
│ └── fruits/
│ ├── CMakeLists.txt
│ ├── breakfast/
│ │ ├── CMakeLists.txt
│ │ ├── flatware/
│ │ │ ├── Teaspoon.cpp
│ │ │ └── Teaspoon.hpp
│ │ └── main.cpp
│ └── dinner/
│ ├── CMakeLists.txt
│ └── main.cpp
├── example/
│ ├── CMakeLists.txt
│ └── fruits/
│ ├── CMakeLists.txt
│ ├── quick_meal/
│ │ ├── CMakeLists.txt
│ │ └── main.cpp
│ └── vegan_party/
│ ├── CMakeLists.txt
│ └── main.cpp
└── test/
 ├── CMakeLists.txt
 └── fruits/
 ├── CMakeLists.txt
 ├── check_tropical/
 │ ├── CMakeLists.txt
 │ └── data/
 │ └── avocado.ini
 └── skin_off/
 └── CMakeLists.txt

3.14. Usage requirements

	3.14.1. Compile definitions

	3.14.2. Include directories

	3.14.3. Link libraries

3.14.1. Compile definitions

3.14.2. Include directories

3.14.3. Link libraries

3.15. Build types

3.15.1. Detect Multi/Single

string(COMPARE EQUAL "${CMAKE_CFG_INTDIR}" "." is_single)
if(is_single)
 message("Single-configuration generator")
else()
 message("Multi-configuration generator")
endif()

CMake documentation

	CMAKE_CFG_INTDIR [https://cmake.org/cmake/help/latest/variable/CMAKE_CFG_INTDIR.html]

Warning

if(XCODE OR MSVC) condition doesn’t work because MSVC defined
for NMake single-configuration generator too.

Warning

if(XCODE OR MSVC_IDE) condition doesn’t work because MSVC_IDE is
not defined for Visual Studio MDD toolchain.

3.16. configure_file

3.17. Install

The next step in chain of
Configure ‣ Generate ‣ Build ‣ Test stages is
install: final step of development process which often require
privilege escalation (make vs sudo make install). Installation is an
important part of the ecosystem: results of the project installation allows to
integrate it into another project using find_package and unlike
add_subdirectory doesn’t pollute current scope with unnecessary targets and
variables. Packing use install procedure under the hood.

See also

	CMake stages

	Stages diagram

Examples on GitHub

	Repository [https://github.com/cgold-examples/install-examples]

	Latest ZIP [https://github.com/cgold-examples/install-examples/archive/master.zip]

	3.17.1. Library

	3.17.2. Header-only library

	3.17.3. Library with dependencies

	3.17.4. Optional dependencies

	3.17.5. CMake modules

	3.17.6. Export header

	3.17.7. RPATH

	3.17.8. Version

	3.17.9. CMAKE_INSTALL_PREFIX
	3.17.9.1. Modify

	3.17.9.2. On the fly

	3.17.9.3. Read

	3.17.9.4. Implicit read

	3.17.9.5. Install script

	3.17.9.6. Summary

	3.17.10. Layout

	3.17.11. Samples

	3.17.12. Managing dependencies
	3.17.12.1. Bad way

	3.17.12.2. Good way

3.17.1. Library

TODO

ALIAS: Unify interface for both find_package and add_subdirectory

3.17.2. Header-only library

TODO

INTERFACE

3.17.3. Library with dependencies

TODO

find_dependency in Config.cmake.in

3.17.4. Optional dependencies

TODO

find_dependency(baz CONFIG) under condition if("@FOO_WITH_BAZ@")

3.17.5. CMake modules

3.17.6. Export header

CMake documentation

	GenerateExportHeader [https://cmake.org/cmake/help/latest/module/GenerateExportHeader.html]

3.17.7. RPATH

CMake wiki

	RPATH handling [https://cmake.org/Wiki/CMake_RPATH_handling]

Wikipedia

	RPATH [https://en.wikipedia.org/wiki/Rpath]

3.17.8. Version

CMake documentation

	write_basic_package_version_file [https://cmake.org/cmake/help/latest/module/CMakePackageConfigHelpers.html]

3.17.9. CMAKE_INSTALL_PREFIX

CMake documentation

	CMAKE_INSTALL_PREFIX [https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html]

CMAKE_INSTALL_PREFIX variable can be used to control destination directory
of install procedure:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hsimple -B_builds -DCMAKE_INSTALL_PREFIX=_install/config-A
[install-examples]> cmake --build _builds --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-A/lib/libfoo.a

[install-examples]> cmake -Hsimple -B_builds -DCMAKE_INSTALL_PREFIX=_install/config-B
[install-examples]> cmake --build _builds --target install
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-B/lib/libfoo.a

3.17.9.1. Modify

This variable is designed to be modified on user side. Do not force it in
code!

cmake_minimum_required(VERSION 2.8)
project(foo)

set(CMAKE_INSTALL_PREFIX "${CMAKE_CURRENT_BINARY_DIR}/3rdParty/root") # BAD CODE!

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hmodify-bad -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds

Library unexpectedly installed to 3rdparty/root instead of _install:

[install-examples]> cmake --build _builds --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_builds/3rdParty/root/lib/libfoo.a

Note

Use CACHE in such case

3.17.9.2. On the fly

Make do support changing of install directory on the fly by DESTDIR:

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hsimple -B_builds -DCMAKE_INSTALL_PREFIX=""
[install-examples]> make -C _builds DESTDIR="`pwd`/_install/config-A" install
...
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-A/lib/libfoo.a
make: Leaving directory '/.../install-examples/_builds'

[install-examples]> make -C _builds DESTDIR="`pwd`/_install/config-B" install
...
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/config-B/lib/libfoo.a
make: Leaving directory '/.../install-examples/_builds'

3.17.9.3. Read

Because of the DESTDIR feature, CPack functionality, different nature of
build and install stages often usage of CMAKE_INSTALL_PREFIX variable
on configure step is an indicator of wrongly written code:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)

BAD CODE!
file(
 COPY
 "${CMAKE_CURRENT_LIST_DIR}/README"
 DESTINATION
 "${CMAKE_INSTALL_PREFIX}/share/foo"
)

include(CPack)

User may not want to install such project at all, so copying of file to root
is something unintended and quite surprising. If you’re lucky you will get
problems with permissions on configure step instead of a silent copy:

[install-examples]> rm -rf _builds
[install-examples]> cmake -Hwrong-usage -B_builds
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
CMake Error at CMakeLists.txt:9 (file):
 file COPY cannot copy file
 "/.../install-examples/wrong-usage/README"
 to "/usr/local/share/foo/README".

-- Configuring incomplete, errors occurred!
See also "/.../install-examples/_builds/CMakeFiles/CMakeOutput.log".

CPack will use separate directory for install so README will not be included
in archive:

[install-examples]> rm -rf _builds _install
[install-examples]> cmake -Hwrong-usage -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
[install-examples]> (cd _builds && cpack -G TGZ)
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: foo
CPack: - Install project: foo
CPack: Create package
CPack: - package: /.../install-examples/_builds/foo-0.1.1-Linux.tar.gz generated.
[install-examples]> tar xf _builds/foo-0.1.1-Linux.tar.gz
[install-examples]> find foo-0.1.1-Linux -type f
foo-0.1.1-Linux/lib/libfoo.a

3.17.9.4. Implicit read

All work should be delegated to install command instead, in such case
CMAKE_INSTALL_PREFIX will be read implicitly:

cmake_minimum_required(VERSION 2.8)
project(foo)

add_library(foo foo.cpp)

install(TARGETS foo DESTINATION lib)
install(FILES README DESTINATION share/foo)

include(CPack)

[install-examples]> rm -rf _builds _install
[install-examples]> cmake -Hright-usage -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds

Correct install directory:

[install-examples]> cmake --build _builds --target install
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX static library libfoo.a
[100%] Built target foo
Install the project...
-- Install configuration: ""
-- Installing: /.../install-examples/_install/lib/libfoo.a
-- Installing: /.../install-examples/_install/share/foo/README

Correct packing:

[install-examples]> (cd _builds && cpack -G TGZ)
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: foo
CPack: - Install project: foo
CPack: Create package
CPack: - package: /.../install-examples/_builds/foo-0.1.1-Linux.tar.gz generated.
[install-examples]> tar xf _builds/foo-0.1.1-Linux.tar.gz
[install-examples]> find foo-0.1.1-Linux -type f
foo-0.1.1-Linux/share/foo/README
foo-0.1.1-Linux/lib/libfoo.a

3.17.9.5. Install script

Same logic can be applied if CMAKE_INSTALL_PREFIX used in script created
by configure_file command:

Top-level CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(foo)

set(script "${CMAKE_CURRENT_BINARY_DIR}/script.cmake")
configure_file(script.cmake.in "${script}" @ONLY)

install(SCRIPT "${script}")

include(CPack)

script.cmake.in

cmake_minimum_required(VERSION 2.8)

set(correct "$ENV{DESTDIR}${CMAKE_INSTALL_PREFIX}")

message("Incorrect value: '@CMAKE_INSTALL_PREFIX@'")
message("Correct value: '${correct}'")

file(WRITE "${correct}/share/foo/info" "Some info")

Configure for DESTDIR usage:

[install-examples]> rm -rf _builds _install foo-0.1.1-Linux
[install-examples]> cmake -Hconfigure -B_builds -DCMAKE_INSTALL_PREFIX=""
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds

DESTDIR read correctly:

[install-examples]> make DESTDIR="`pwd`/_install/config-A" -C _builds install
make: Entering directory '/.../install-examples/_builds'
Install the project...
-- Install configuration: ""
Incorrect value: ''
Correct value: '/.../install-examples/_install/config-A'
make: Leaving directory '/.../install-examples/_builds'
[install-examples]> find _install/config-A -type f
_install/config-A/share/foo/info

Changing directory on the fly:

[install-examples]> make DESTDIR="`pwd`/_install/config-B" -C _builds install
make: Entering directory '/.../install-examples/_builds'
Install the project...
-- Install configuration: ""
Incorrect value: ''
Correct value: '/.../install-examples/_install/config-B'
make: Leaving directory '/.../install-examples/_builds'
[install-examples]> find _install/config-B -type f
_install/config-B/share/foo/info

Regular install:

[install-examples]> rm -rf _builds _install
[install-examples]> cmake -Hconfigure -B_builds -DCMAKE_INSTALL_PREFIX="`pwd`/_install"
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../install-examples/_builds
[install-examples]> cmake --build _builds --target install
Install the project...
-- Install configuration: ""
Incorrect value: '/.../install-examples/_install'
Correct value: '/.../install-examples/_install'
[install-examples]> find _install -type f
_install/share/foo/info

Packing:

[install-examples]> (cd _builds && cpack -G TGZ)
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: foo
CPack: - Install project: foo
Incorrect value: '/.../install-examples/_install'
Correct value: '/.../install-examples/_builds/_CPack_Packages/Linux/TGZ/foo-0.1.1-Linux'
CPack: Create package
CPack: - package: /.../install-examples/_builds/foo-0.1.1-Linux.tar.gz generated.
[install-examples]> tar xf _builds/foo-0.1.1-Linux.tar.gz
[install-examples]> find foo-0.1.1-Linux -type f
foo-0.1.1-Linux/share/foo/info

3.17.9.6. Summary

	Do not force value of CMAKE_INSTALL_PREFIX

	Use of CMAKE_INSTALL_PREFIX on configure, generate, build steps is an
indicator of badly designed code

	Use install instead of CMAKE_INSTALL_PREFIX

	Respect DESTDIR

3.17.10. Layout

	include/

	<project>/

	<project>.hpp

	lib*/

	<project>_<target>

	cmake/

	<project>/

	<project>Config.cmake

	bin/

	<project>_<target>

	cmake/

	module/

	<project>_<module>.cmake

	template/

	<project>/

	*.cmake.in

	script/

	<project>/

	*.cmake

	include/

	<project>/

	*.cmake

include(GNUInstallDirs)

install(
 TARGETS <project>_<target>_1 <project>_<target>_2
 EXPORT <project>Targets
 LIBRARY DESTINATION "${CMAKE_INSTALL_LIBDIR}"
 ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}"
 RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}"
 INCLUDES DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}"
)

See also

	Project layout

CMake documentation

	GNUInstallDirs [https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html]

Linux layout after installation of
example project [https://github.com/cgold-examples/fruits]:

├── bin
│ ├── fruits_breakfast*
│ └── fruits_dinner*
├── include
│ └── fruits
│ ├── fruits.hpp
│ ├── FRUITS_ROSACEAE_EXPORT.h
│ ├── FRUITS_TROPICAL_EXPORT.h
│ ├── rosaceae
│ │ ├── Pear.hpp
│ │ ├── Plum.hpp
│ │ └── rosaceae.hpp
│ └── tropical
│ ├── Avocado.hpp
│ ├── Pineapple.hpp
│ └── tropical.hpp
└── lib
 ├── cmake
 │ └── fruits
 │ ├── fruitsConfig.cmake
 │ ├── fruitsConfigVersion.cmake
 │ ├── fruitsTargets.cmake
 │ └── fruitsTargets-release.cmake
 ├── libfruits_rosaceae.a
 └── libfruits_tropical.a

Windows layout after installation of
example project [https://github.com/cgold-examples/fruits]:

├── bin
│ ├── fruits_breakfast.exe
│ └── fruits_dinner.exe
├── include
│ └── fruits
│ ├── fruits.hpp
│ ├── FRUITS_ROSACEAE_EXPORT.h
│ ├── FRUITS_TROPICAL_EXPORT.h
│ ├── rosaceae
│ │ ├── Pear.hpp
│ │ ├── Plum.hpp
│ │ └── rosaceae.hpp
│ └── tropical
│ ├── Avocado.hpp
│ ├── Pineapple.hpp
│ └── tropical.hpp
└── lib
 ├── cmake
 │ └── fruits
 │ ├── fruitsConfig.cmake
 │ ├── fruitsConfigVersion.cmake
 │ ├── fruitsTargets.cmake
 │ └── fruitsTargets-release.cmake
 ├── fruits_rosaceae.lib
 └── fruits_tropical.lib

Windows Debug + DLL:

├── bin
│ ├── fruits_breakfast.exe
│ ├── fruits_breakfast.pdb
│ ├── fruits_dinner.exe
│ ├── fruits_dinner.pdb
│ ├── fruits_rosaceaed.dll
│ ├── fruits_rosaceaed.pdb
│ ├── fruits_tropicald.dll
│ └── fruits_tropicald.pdb
├── include
│ └── fruits
│ ├── fruits.hpp
│ ├── FRUITS_ROSACEAE_EXPORT.h
│ ├── FRUITS_TROPICAL_EXPORT.h
│ ├── rosaceae
│ │ ├── Pear.hpp
│ │ ├── Plum.hpp
│ │ └── rosaceae.hpp
│ └── tropical
│ ├── Avocado.hpp
│ ├── Pineapple.hpp
│ └── tropical.hpp
└── lib
 ├── cmake
 │ └── fruits
 │ ├── fruitsConfig.cmake
 │ ├── fruitsConfigVersion.cmake
 │ ├── fruitsTargets.cmake
 │ └── fruitsTargets-debug.cmake
 ├── fruits_rosaceaed.lib
 └── fruits_tropicald.lib

3.17.11. Samples

	Install library. TODO: adapt https://github.com/forexample/package-example

	Header-only library

	Install library, optional dependencies (system ZLIB)

	https://github.com/cgold-examples/fruits

	optional dependencies

	version

	CMake modules

3.17.12. Managing dependencies

There are a lot of different ways to deal with dependencies. We start with
widely used anti-patterns and explain why they are anti-patterns. The second
part will contain an examples of good approaches and list of requirements
that any other package manager should satisfy.

	3.17.12.1. Bad way
	3.17.12.1.1. Merge sources

	3.17.12.1.2. Copy to “third_party” directory

	3.17.12.1.3. Git submodule

	3.17.12.1.4. Summary

	3.17.12.2. Good way
	3.17.12.2.1. Package manager

	3.17.12.2.2. ExternalProject_Add

	3.17.12.2.3. Requirements

3.17.12.1. Bad way

3.17.12.1.1. Merge sources

Assume we have library foo:

src
└── foo
 ├── foo.cpp
 └── foo.hpp

Library foo depends on library boo:

src
└── boo
 ├── boo.cpp
 └── boo.hpp

The worst thing you can do is to merge both sources by copying boo
to the directory with foo:

src
├── boo
│ ├── boo.cpp
│ └── boo.hpp
└── foo
 ├── foo.cpp
 └── foo.hpp

C++ directive #include <foo/foo.hpp> means that directory src/ should
be in list of paths to headers (in terms of compilers like GCC: -I/.../src).
We want our local directory to have highest priority if there are several
paths (e.g. if there are system wide paths and another copy of library foo
installed system wide, then we want local copy to take a priority). Hence
whatever the rest of header paths is, the #include <boo/boo.hpp> of
dependent library boo will always fall to our local copy.
If somebody want to try to use another version of boo the only choice
you left to him is to remove src/boo directory.

3.17.12.1.2. Copy to “third_party” directory

Instead of copying to the same directory you can copy dependent library
to third_party directory:

src
└── foo
 ├── foo.cpp
 └── foo.hpp
third_party
└── boo
 ├── boo.cpp
 └── boo.hpp

There will be two independent paths to headers (at least): -I/.../src and
-I/.../third_party hence if somebody want to try to use another version
of boo it’s enough to modify CMake code without changing project structure.

Assuming that both libraries are under VCS control, by
doing plain copy operation you’re losing information about version of
boo. Also if you want to modify boo sources locally, then merging them
with update of boo from upstream might be not a trivial operation.

3.17.12.1.3. Git submodule

Using same structure you can keep information about version of boo by
adding it as a
Git submodule [https://git-scm.com/book/en/v2/Git-Tools-Submodules]
instead of raw copying. Git functionality will help to track modification of
third party code and merging it with future releases.

Git submodules will work well for:

	Adding sources that are extension of your project, hence it makes no
sense to add these sources to another project. I.e. submodule is used as
a dependency exactly for one node in dependency tree.

	Managing dependencies in the project that can’t be used as another dependency,
i.e. your project is the leaf in dependency tree, like executable.
Though this still may raise the question of size optimization when package
manager is used, it will be better to use dependencies as a shared libraries.

	Short period of development when you’re actively modifying third party
code.

Submodule is not a good long term solution for managing dependencies that
can be reused. It leads to conflicts like this:

[image: Conflict example]

Note

If we are talking about reusable library then you can’t control final
structure of dependency tree. If you are not experiencing such issue it
doesn’t mean the same will be true for somebody else.

At first you will simply get target names conflict:

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-conflict -B_builds
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
CMake Error at third_party/b/third_party/x/CMakeLists.txt:4 (add_library):
 add_library cannot create target "x" because another target with the same
 name already exists. The existing target is a static library created in
 source directory "/.../third_party/a/third_party/x".

You can protect including of third party code by condition:

if(NOT TARGET x::x)
 add_subdirectory(third_party/x)
endif()

It will solve target name conflict however it may lead to tricky behavior.
Effectively it will introduce “first win” strategy while doing dependency
resolution, mixing two separate concepts:

	Project structure

	foo depends on a and b

	a depends on x

	b depends on x

	Versions

	Some a version available

	Some b version available

	Two versions of x available: v1.0 and v2.0

Options is a common way to customize your CMake code, often it’s involve
the change of used dependencies and change of project structure. Let’s add option
FOO_WITH_A to the example to control optional dependency foo -> a:

cmake_minimum_required(VERSION 3.2)
project(foo)

option(FOO_WITH_A "Use 'a' module" ON)

add_executable(foo foo.cpp)

if(FOO_WITH_A)
 add_subdirectory(third_party/a)
 target_link_libraries(foo PUBLIC a::a)
 target_compile_definitions(foo PUBLIC FOO_WITH_A)
endif()

add_subdirectory(third_party/b)
target_link_libraries(foo PUBLIC b::b)

enable_testing()
add_test(NAME foo COMMAND foo)

When option FOO_WITH_A is enabled the x dependency from a
subdirectory will proceed first, hence v1.0 will be used. And if
FOO_WITH_A is disabled the x dependency from b subdirectory will
proceed first, hence v2.0 will be used.

From user perspective it can be quite surprising and may look like some a
functionality is leaking into module b:

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=ON
...
[examples]> cmake --build _builds
...
[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../examples/_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module
1: x say: nice
1: Running 'b' module
1: x say: nice
1/1 Test #1: foo Passed 0.00 sec

Disable module a and behavior of b changed!

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=OFF
...
[examples]> cmake --build _builds
...
[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../examples/_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module
1: (Module 'a' disabled)
1: Running 'b' module
1: x say: good
1/1 Test #1: foo Passed 0.00 sec

Note

Such behavior can be “stabilized” by adding foo -> x dependency:

before 'a' and 'b'
add_subdirectory(third_party/x)

if(FOO_WITH_A)
 add_subdirectory(third_party/a)
endif()
add_subdirectory(third_party/b)

But this obviously doesn’t scale well since x is an implicit dependency
and we have no control over whether it will be used in future a/b
releases or more dependencies will be introduced or on which options/platforms
they depends, etc.

Since version of x tied to project structure every time you switch option
FOO_WITH_A the whole project will rebuild:

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=ON

Build everything from scratch first time:

[examples]> cmake --build _builds
Scanning dependencies of target x
[12%] Building CXX object third_party/a/third_party/x/CMakeFiles/x.dir/x/x.cpp.o
[25%] Linking CXX static library libx.a
[25%] Built target x
Scanning dependencies of target b
[37%] Building CXX object third_party/b/CMakeFiles/b.dir/b/b.cpp.o
[50%] Linking CXX static library libb.a
[50%] Built target b
Scanning dependencies of target a
[62%] Building CXX object third_party/a/CMakeFiles/a.dir/a/a.cpp.o
[75%] Linking CXX static library liba.a
[75%] Built target a
Scanning dependencies of target foo
[87%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

Second time just checking:

[examples]> cmake --build _builds
[25%] Built target x
[50%] Built target b
[75%] Built target a
[100%] Built target foo

Disable component a:

[examples]> cmake -Hdep-examples/deps-submodule-option -B_builds -DFOO_WITH_A=OFF

Whole project rebuild!

[examples]> cmake --build _builds
Scanning dependencies of target x
[16%] Building CXX object third_party/b/third_party/x/CMakeFiles/x.dir/x/x.cpp.o
[33%] Linking CXX static library libx.a
[33%] Built target x
Scanning dependencies of target b
[50%] Building CXX object third_party/b/CMakeFiles/b.dir/b/b.cpp.o
[66%] Linking CXX static library libb.a
[66%] Built target b
Scanning dependencies of target foo
[83%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

3.17.12.1.4. Summary

The best way to introduce bundled dependency is to add it to the separate
directory like third_party as a submodule.

The downsides of such approach:

	add_subdirectory is not a shareable solution. Each
add_subdirectory(third_party/x) block from different projects has it’s
own copy of x artifacts. Every time you start new project and add
add_subdirectory(third_party/x) you’re building x from scratch.
It’s not convenient if such build takes a long time.

	Dependency resolution is not option friendly.

See also

	Why not bundle dependencies [https://wiki.gentoo.org/wiki/Why_not_bundle_dependencies]

3.17.12.2. Good way

3.17.12.2.1. Package manager

Use system package manager to manage a and b dependencies. Install
them to your system and then integrate into CMake using
find_package [https://cmake.org/cmake/help/latest/command/find_package.html]:

cmake_minimum_required(VERSION 3.2)
project(foo)

option(FOO_WITH_A "Use 'a' module" ON)

add_executable(foo foo.cpp)

if(FOO_WITH_A)
 find_package(a CONFIG REQUIRED)
 target_link_libraries(foo PUBLIC a::a)
 target_compile_definitions(foo PUBLIC FOO_WITH_A)
endif()

find_package(b CONFIG REQUIRED)
target_link_libraries(foo PUBLIC b::b)

enable_testing()
add_test(NAME foo COMMAND foo)

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-find-package -B_builds -DFOO_WITH_A=ON
[examples]> cmake --build _builds

Result of running test with module a enabled:

[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module
1: x say: nice
1: Running 'b' module
1: x say: nice
1/1 Test #1: foo Passed 0.00 sec

With module a disabled:

[examples]> cmake -Hdep-examples/deps-find-package -B_builds -DFOO_WITH_A=OFF

Third parties remains the same of course, only foo executable rebuild:

[examples]> cmake --build _builds
Scanning dependencies of target foo
[50%] Building CXX object CMakeFiles/foo.dir/foo.cpp.o
[100%] Linking CXX executable foo
[100%] Built target foo

Behavior of module b is the same:

[examples]> cd _builds
[examples/_builds]> ctest -V
1: Test command: /.../_builds/foo
1: Test timeout computed to be: 9.99988e+06
1: Running 'a' module
1: (Module 'a' disabled)
1: Running 'b' module
1: x say: nice
1/1 Test #1: foo Passed 0.00 sec

Pros:

	Locally shareable. Root directory with libraries can be reused by
any number of local project.

	Globally shareable. Usually dependencies distributed as binaries shared
across many local machines. You don’t have to build all dependencies
from sources.

	Option friendly. Whatever options you’ve enabled the same set of
third parties will be used.

Cons:

	Not much customization over third party dependencies

	Different system package managers have different set of packages and
available versions

	Usually only one root directory

3.17.12.2.2. ExternalProject_Add

With the help of
ExternalProject_Add [https://cmake.org/cmake/help/latest/module/ExternalProject.html]
module you can create so-called “super-build” project with dependencies:

cmake_minimum_required(VERSION 3.2)
project(super-build-example)

include(ExternalProject)

ExternalProject_Add(
 x
 URL https://github.com/cgold-examples/x/archive/v1.0.tar.gz
 URL_HASH SHA1=3c15777fddee4fbf41a57241effc59a821562f65
 CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}
)

ExternalProject_Add(
 a
 URL https://github.com/cgold-examples/a/archive/v1.0.tar.gz
 URL_HASH SHA1=9adb3574369cf3c186b4984eb6778fca5866e347
 CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}
 DEPENDS x
)

ExternalProject_Add(
 b
 URL https://github.com/cgold-examples/b/archive/v1.0.tar.gz
 URL_HASH SHA1=7ef127ddc31d6a9b510d9cdc318c68c7709a8204
 CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${CMAKE_INSTALL_PREFIX}
 DEPENDS x
)

Using such project you can install all dependencies to some custom root
_ep_install directory:

[examples]> rm -rf _ep_build
[examples]> cmake -Hdep-examples/deps-super-build -B_ep_build -DCMAKE_INSTALL_PREFIX=_ep_install
[examples]> cmake --build _ep_build
...
-- Downloading...
 dst='/.../examples/_ep_build/x-prefix/src/v1.0.tar.gz'
 timeout='none'
-- Using src='https://github.com/cgold-examples/x/archive/v1.0.tar.gz'
...
Install the project...
-- Install configuration: ""
-- Installing: /.../_ep_install/lib/libx.a
-- Installing: /.../_ep_install/include/x/x.hpp
-- Installing: /.../_ep_install/lib/cmake/x/xConfig.cmake
-- Installing: /.../_ep_install/lib/cmake/x/xTargets.cmake
-- Installing: /.../_ep_install/lib/cmake/x/xTargets-noconfig.cmake
...
-- Downloading...
 dst='/.../examples/_ep_build/a-prefix/src/v1.0.tar.gz'
 timeout='none'
-- Using src='https://github.com/cgold-examples/a/archive/v1.0.tar.gz'
...
Install the project...
-- Install configuration: ""
-- Installing: /.../_ep_install/lib/liba.a
-- Installing: /.../_ep_install/include/a/a.hpp
-- Installing: /.../_ep_install/lib/cmake/a/aConfig.cmake
-- Installing: /.../_ep_install/lib/cmake/a/aTargets.cmake
-- Installing: /.../_ep_install/lib/cmake/a/aTargets-noconfig.cmake
...
-- Downloading...
 dst='/.../examples/_ep_build/b-prefix/src/v1.0.tar.gz'
 timeout='none'
-- Using src='https://github.com/cgold-examples/b/archive/v1.0.tar.gz'
...
Install the project...
-- Install configuration: ""
-- Installing: /.../_ep_install/lib/libb.a
-- Installing: /.../_ep_install/include/b/b.hpp
-- Installing: /.../_ep_install/lib/cmake/b/bConfig.cmake
-- Installing: /.../_ep_install/lib/cmake/b/bTargets.cmake
-- Installing: /.../_ep_install/lib/cmake/b/bTargets-noconfig.cmake

Now you can use same deps-find-package example and inject _ep_install
root directory with your custom dependencies instead of system dependencies:

[examples]> rm -rf _builds
[examples]> cmake -Hdep-examples/deps-find-package -B_builds -DCMAKE_PREFIX_PATH=/.../examples/_ep_install -DCMAKE_VERBOSE_MAKEFILE=ON
[examples]> cmake --build _builds
/usr/bin/c++ ... -o foo
 /.../_ep_install/lib/liba.a
 /.../_ep_install/lib/libb.a
 /.../_ep_install/lib/libx.a

Pros:

	Locally shareable. Root directory with libraries can be reused by
any number of local project.

	Option friendly. Whatever options you’ve enabled the same set of
third parties will be used.

	Third party customization. You have full control over your dependencies.

	Same set of packages across all platforms.

	You can create as many independent root directories as you need.

Cons:

	Only build from sources. There is no built-in mechanism for supporting
distribution of binaries and meta information. Usually user have to build
everything from scratch on new machine.

	You have to know everything about your dependencies and carefully manage
the build order, including implicit dependencies. For example if project a
depends on x optionally you have to do something like this:

option(EP_A_WITH_X "Enable A_WITH_X for 'a' package" ON)

if(EP_A_WITH_X)
 # We need 'x' project
 ExternalProject_Add(
 x
 ...
)
 set(a_dependencies x)
endif()

ExternalProject_Add(
 a
 ...
 CMAKE_ARGS -DA_WITH_X=${EP_A_WITH_X}
 DEPENDS ${a_dependencies}
)

If dependency tree is complex it can be hard to maintain such super-build.

	Writing correct customizable ExternalProject_Add rules is not a trivial
task.

3.17.12.2.3. Requirements

Good dependency management system should satisfy next requirements:

	Locally shareable. Root directory with libraries should be easily reused
by any number of local project. CMake has
find_package [https://cmake.org/cmake/help/latest/command/find_package.html]
facility for injecting code into project and semi-automatic generation
of XXXConfig.cmake configs for consumer (see
Creating packages [https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html#creating-packages]).
Dependency management system should be friendly to this approach.

	Globally shareable. For the performance purposes there should be an
ability to reuse binaries without building them from sources.

	Option friendly. Whatever options you’ve enabled the same set of
third parties should be used.

	Third party customization. You should have an ability to control the
way how third party code built: CMake options, CMake build types,
compiler flags, etc.

3.18. Toolchain

CMake documentation

	CMake toolchains [https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html]

	3.18.1. Globals
	3.18.1.1. C++ standard

3.18.1. Globals

Even if toolchain is originally designed to help with cross-compiling and
usually containing fancy variables like
CMAKE_SYSTEM_NAME [https://cmake.org/cmake/help/latest/variable/CMAKE_SYSTEM_NAME.html]
or
CMAKE_FIND_ROOT_PATH [https://cmake.org/cmake/help/latest/variable/CMAKE_FIND_ROOT_PATH.html]
in practice it can help you with holding compiler settings that logically
doesn’t belong to some particular local CMakeLists.txt but rather should be
shared across various projects.

	3.18.1.1. C++ standard
	3.18.1.1.1. Example

	3.18.1.1.2. Bad

	3.18.1.1.3. Toolchain

	3.18.1.1.4. try_compile

	3.18.1.1.5. Defaults

	3.18.1.1.6. Scalability

	3.18.1.1.7. Summary

3.18.1.1. C++ standard

C++ standard flags should be set globally. You should avoid using any commands
that set it locally for target or project.

Note

Example tested with GCC 5.4.1 on Linux. Different compilers may work
with C++ standards differently.

Examples on GitHub

	Repository [https://github.com/cgold-examples/toolchain-usage-examples]

	Latest ZIP [https://github.com/cgold-examples/toolchain-usage-examples/archive/master.zip]

3.18.1.1.1. Example

Let’s assume we have header-only library boo implemented by Boo.hpp
which can work with both C++98 and C++11:

// Boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

#if __cplusplus >= 201103L
include <thread>
#endif

class Boo {
 public:
#if __cplusplus >= 201103L
 typedef std::thread thread_type;
 static void call(thread_type&) {
 }
#else
 class InternalThread {
 };
 typedef InternalThread thread_type;
 static void call(thread_type&) {
 }
#endif
};

#endif // BOO_HPP_

Library foo that depends on boo and use C++11 internally:

// Foo.hpp

#ifndef FOO_HPP_
#define FOO_HPP_

#include <Boo.hpp>

class Foo {
 public:
 static int optimize(Boo::thread_type&);
};

#endif // FOO_HPP_

// Foo.cpp

#include <Foo.hpp>

constexpr int foo_helper_value() {
 return 0x42;
}

int Foo::optimize(Boo::thread_type&) {
 return foo_helper_value();
}

Executable baz knows nothing about standards and just use API of
Boo and Foo classes, Foo is optional:

// main.cpp

#include <iostream> // std::cout

#include <Boo.hpp>

#ifdef WITH_FOO
include <Foo.hpp>
#endif

int main() {
 Boo::thread_type t;

 std::cout << "C++ standard: " << __cplusplus << std::endl;

#ifdef WITH_FOO
 std::cout << "With Foo support" << std::endl;
 Foo::optimize(t);
#endif

 Boo::call(t);
}

Graphically it will look like this:

[image: Targets]
CMake project :

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)
project(foo)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
 add_library(foo Foo.cpp Foo.hpp)
 target_link_libraries(foo PUBLIC boo)
 target_link_libraries(baz PUBLIC foo)
 target_compile_definitions(baz PUBLIC WITH_FOO)
endif()

Overview:

	boo provide same API for both C++11 and C++98 configuration so user
don’t have to worry about standards.

	foo use some C++11 feature but only internally.

	baz don’t know anything about used standards, interested only in boo
or foo API.

Imagine that baz for the long time relies only on boo, it’s important
to keep this functionality even for old C++98 configuration. But there is
foo library that use C++11 and allow us to introduce some optimization.

We want:

	C++11 with foo

	C++11 without foo

	C++98 with foo should produce error message as soon as possible

	C++98 without foo

3.18.1.1.2. Bad

The first thing that comes to mind after looking at C++ code is that since
foo use constexpr feature internally we should do:

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)
project(foo)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
 add_library(foo Foo.cpp Foo.hpp)
 target_compile_features(foo PRIVATE cxx_constexpr)
 target_link_libraries(foo PUBLIC boo)
 target_link_libraries(baz PUBLIC foo)
 target_compile_definitions(baz PUBLIC WITH_FOO)
endif()

This is not correct and will end with error on link stage after successful
generation and compilation:

[examples]> rm -rf _builds
[examples]> cmake -Htoolchain-usage-examples/globals/cxx-standard/bad -B_builds -DWITH_FOO=ON
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
...
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
Scanning dependencies of target foo
[25%] Building CXX object CMakeFiles/foo.dir/Foo.cpp.o
[50%] Linking CXX static library libfoo.a
[50%] Built target foo
Scanning dependencies of target baz
[75%] Building CXX object CMakeFiles/baz.dir/main.cpp.o
[100%] Linking CXX executable baz
CMakeFiles/baz.dir/main.cpp.o: In function `main':
main.cpp:(.text+0x64): undefined reference to `Foo::optimize(Boo::InternalThread&)'
collect2: error: ld returned 1 exit status
CMakeFiles/baz.dir/build.make:95: recipe for target 'baz' failed
make[2]: *** [baz] Error 1
CMakeFiles/Makefile2:104: recipe for target 'CMakeFiles/baz.dir/all' failed
make[1]: *** [CMakeFiles/baz.dir/all] Error 2
Makefile:83: recipe for target 'all' failed
make: *** [all] Error 2

The reason is violation of ODR rule, similar example have been described
before.
Effectively we are having two different libraries boo_11 and boo_98
with the same symbols:

[image: Targets]

3.18.1.1.3. Toolchain

Let’s create toolchain file cxx11.cmake instead so we can use it to set
standard globally for all targets in project:

cxx11.cmake

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED YES)

You can add it with -DCMAKE_TOOLCHAIN_FILE=/path/to/cxx11.cmake:

[examples]> rm -rf _builds
[examples]> cmake -Htoolchain-usage-examples/globals/cxx-standard/toolchain -B_builds -DCMAKE_TOOLCHAIN_FILE=cxx11.cmake -DWITH_FOO=YES
-- The C compiler identification is GNU 5.4.1
-- The CXX compiler identification is GNU 5.4.1
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /.../examples/_builds
[examples]> cmake --build _builds
Scanning dependencies of target foo
[25%] Building CXX object CMakeFiles/foo.dir/Foo.cpp.o
[50%] Linking CXX static library libfoo.a
[50%] Built target foo
Scanning dependencies of target baz
[75%] Building CXX object CMakeFiles/baz.dir/main.cpp.o
[100%] Linking CXX executable baz
[100%] Built target baz
[examples]> ./_builds/baz
C++ standard: 201103
With Foo support

Looks better now!

3.18.1.1.4. try_compile

The next thing we need to improve is early error detection. Note that now
if we try to specify WITH_FOO=ON with C++98 there will be no errors
reported on generation stage. Build will failed while trying to compile foo
target.

To do this you can create C++ file and add few samples of features you
are planning to use:

// features_used_by_foo.cpp

constexpr int value() {
 return 0x42;
}

int main() {
 return value();
}

Use CMake module with try_compile to test this code:

features_used_by_foo.cmake

set(bindir "${CMAKE_CURRENT_BINARY_DIR}/foo/try_compile")
set(saved_output "${bindir}/output.txt")
set(srcfile "${CMAKE_CURRENT_LIST_DIR}/features_used_by_foo.cpp")
try_compile(
 FOO_IS_FINE
 "${bindir}"
 "${srcfile}"
 OUTPUT_VARIABLE output
)
if(NOT FOO_IS_FINE)
 file(WRITE "${saved_output}" "${output}")
 message(
 FATAL_ERROR
 "Can't compile test file:\n"
 " ${srcfile}\n"
 "Error log:\n"
 " ${saved_output}\n"
 "Please check that your compiler supports C++11 features and C++11 standard enabled."
)
endif()

Include this check before creating target foo:

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)
project(foo)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
 include("${CMAKE_CURRENT_LIST_DIR}/features_used_by_foo.cmake")
 add_library(foo Foo.cpp Foo.hpp)
 target_link_libraries(foo PUBLIC boo)
 target_link_libraries(baz PUBLIC foo)
 target_compile_definitions(baz PUBLIC WITH_FOO)
endif()

3.18.1.1.5. Defaults

As usual cache variables allow us to set default values if needed:

CMakeLists.txt

cmake_minimum_required(VERSION 3.1)

set(
 CMAKE_TOOLCHAIN_FILE
 "${CMAKE_CURRENT_LIST_DIR}/cxx11.cmake"
 CACHE
 FILEPATH
 "Default toolchain"
)

project(foo)

option(WITH_FOO "Enable Foo optimization" ON)

add_library(boo INTERFACE)
target_include_directories(boo INTERFACE "$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>")

add_executable(baz main.cpp)
target_link_libraries(baz PUBLIC boo)

if(WITH_FOO)
 include("${CMAKE_CURRENT_LIST_DIR}/features_used_by_foo.cmake")
 add_library(foo Foo.cpp Foo.hpp)
 target_link_libraries(foo PUBLIC boo)
 target_link_libraries(baz PUBLIC foo)
 target_compile_definitions(baz PUBLIC WITH_FOO)
endif()

Note

	Toolchain should be set before first project command, see
Project: Tools discovering

See also

	Cache variables: Use case

3.18.1.1.6. Scalability

If this example looks simple and used approach look like an overkill just
imagine next situation:

	boo is external library that supports C++98, C++11, C++14, etc. standards
and consists of 1000+ source files

	foo is external library that supports only few modern standards and tested
with C++11 and C++17. Consist of 1000+ source files and non-trivially
interacts with boo

	Your project baz has boo requirement and optional foo, should
works correctly in all possibles variations

The worst that may happen if you will use toolchain approach is that foo
will fail with compile error instead of error on generation stage. The
error will be plain, such as Can't use 'auto', -std=c++11 is missing?.
This can be easily improved with try_compile.

If you will keep using locally specified standard like modifying
CXX_STANDARD property and conflict will occur:

	there will be no warning messages on generate step

	there will be no warning messages on compile step

	link will fail with opaque error pointing to some implementation details
inside boo library while your usage of boo API will look completely
fine

When you will try to find error elsewhere:

	stand-alone version of boo will work correctly with all examples and
standards

	stand-alone version of foo will interact correctly with boo with all
examples and supported standards

	your project baz will work correctly with boo if you will use
configuration without foo

3.18.1.1.7. Summary

	Use toolchain if you need to specify standard, set default toolchain if needed

	Avoid using CXX_STANDARD in your code

	Avoid using CMAKE_CXX_STANDARD anywhere except toolchain

	Avoid using target_compile_features module

	If you have to use them for any reason at least protect it with if:

if(NOT EXISTS "${CMAKE_TOOLCHAIN_FILE}")
 set_target_properties(boo PROPERTIES CXX_STANDARD 14)
 target_compile_features(foo PUBLIC cxx_constexpr)
endif()

3.19. Generator expressions

3.20. Properties

3.21. Packing

3.22. Continuous integration

	3.22.1. Travis

	3.22.2. AppVeyor

3.22.1. Travis

3.22.2. AppVeyor

4. Platforms

	4.1. iOS
	4.1.1. Errors

	4.1.2. Universal binaries

	4.1.3. Using dynamic frameworks

	4.2. Android
	4.2.1. General Hints

4.1. iOS

	4.1.1. Errors
	4.1.1.1. Validate

	4.1.1.2. Upload to App Store

	4.1.2. Universal binaries

	4.1.3. Using dynamic frameworks

4.1.1. Errors

4.1.1.1. Validate

Stackoverflow

	Missing iOS Distribution signing identity for <username> [http://stackoverflow.com/questions/32821189]

4.1.1.2. Upload to App Store

Stackoverflow

	Getting ITMS-4238 “Redundant Binary Upload” [http://stackoverflow.com/questions/25981890]
(in terms of CMake you have to change CFBundleVersionString, e.g. 1.0 to 1.1)

4.1.2. Universal binaries

4.1.3. Using dynamic frameworks

Examples on GitHub

	Repository [https://github.com/cgold-examples/copy-framework-to-bundle]

	Latest ZIP [https://github.com/cgold-examples/copy-framework-to-bundle/archive/master.zip]

4.2. Android

	4.2.1. General Hints

4.2.1. General Hints

4.2.1.1. Prepare device

You have to prepare your device for debugging. For Android 4.2+
tap Build number seven times:

	Settings ‣ About phone ‣ Build number

Developer options appears now:

	Settings ‣ Developer options

See also

	Enabling On-device Developer Options [https://developer.android.com/studio/run/device.html#developer-device-options]

Note

	On practice instructions may differ for different devices. E.g. it may be
Android version or MIUI version instead of Build number
(http://en.miui.com/thread-24025-1-1.html)

Go to Developer options and turn it ON:

	Settings ‣ Developer options ‣ Developer options

Also turn ON debug mode when USB is connected. Otherwise adb will not
be able to discover the device:

	Settings ‣ Developer options ‣ USB debugging

4.2.1.2. Get Android NDK

Polly

	Script install-ci-dependencies.py [https://github.com/ruslo/polly/blob/d71cc9ad1c68f78b12a33ad91e171f5b82fcc65b/bin/install-ci-dependencies.py] will install Android NDK if environment
variable TOOLCHAIN set to android-*.

Android NDK [https://developer.android.com/ndk/downloads/index.html] contains compilers and other tools for C++ development.

4.2.1.3. Get Android SDK

Android SDK [https://developer.android.com/studio/index.html#downloads] tools used for development on Android platform:
adb, android, emulator, etc.

4.2.1.4. Verify

Connect device with USB and verify it’s visible by adb service:

> adb devices
List of devices attached
MTPxxx device

If service is not started there will be extra messages:

> adb devices
List of devices attached
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
MTPxxx device

4.2.1.5. SDK version on device

The needed version of SDK can be get by reading ro.build.version.sdk:

> adb -d shell getprop ro.build.version.sdk
19

Means you need to use API 19.

Note

	-d is for real device

	-e is for emulator

4.2.1.6. CPU architecture

Run next command to determine CPU architecture of emulator:

> adb -e shell getprop ro.product.cpu.abi
x86

And this one for device:

> adb -d shell getprop ro.product.cpu.abi
armeabi-v7a

4.2.1.7. Log

See also

	logcat [https://developer.android.com/studio/command-line/logcat.html]

Clear log:

> adb logcat -c

Filter only Info (I) messages from SimpleApp, ignore others and exit:

> adb logcat -d SimpleApp:I '*:S'
--------- beginning of /dev/log/main
--------- beginning of /dev/log/system
I/SimpleApp(9015): Hello from Android! (Not debug)
>

Any messages from SimpleApp, ignore others:

> adb logcat -d 'SimpleApp:*' '*:S'
--------- beginning of /dev/log/main
--------- beginning of /dev/log/system
I/SimpleApp(9015): Hello from Android! (Not debug)
>

5. Generators

	5.1. Ninja
	5.1.1. Installation

5.1. Ninja

	CMake option: -G Ninja

	Website [https://ninja-build.org/]

	Sources on GitHub [https://github.com/ninja-build/ninja]

CMake documentation

	Ninja [https://cmake.org/cmake/help/v3.4/generator/Ninja.html]

5.1.1. Installation

5.1.1.1. Ubuntu

> sudo apt-get install ninja-build
> ninja -h
usage: ninja [options] [targets...]
...
> ninja --version
1.3.4

6. Compilers

Contacts

Public

	Feel free to open a new issue [https://github.com/ruslo/CGold/issues/new] if you want to ask a question

Private

	Write me at x@ruslo.dev

	Private chat room on Gitter: https://gitter.im/ruslo

Rejected

There are topics that will be intentionally not covered by this document. Some
features are obsolete - there are better clean and modern approaches. Other
features lead to error-prone code and should not be used. Also I want to keep
document straight/focused and avoid creating too broad tutorial.

	ExternalProject_Add

	FindXXX.cmake

	macro

	Object libraries

	target_compile_features

	write_compiler_detection_header

ExternalProject_Add

There will be no hints about writing a super-build project using
ExternalProject [https://cmake.org/cmake/help/latest/module/ExternalProject.html] because the same can be done nicely with a package manager.

FindXXX.cmake

There are no instructions for writing FindXXX.cmake files like
FindZLIB.cmake because it’s easier to add some code to generate
ZLIBConfig.cmake automatically.

Quote from CMake wiki [https://cmake.org/Wiki/CMake:Improving_Find*_Modules]:

If creating a Find* module for a library that already uses CMake as its build
system, please create a *Config.cmake instead, and submit it upstream. This
solution is much more robust.

CMake documentation

	Creating packages [https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html#creating-packages]

Examples on GitHub

	Package example [https://github.com/forexample/package-example]

macro

Unlike function command the macro command doesn’t create scope so it
does modify variables from scope where it called.

Note

	Use function instead

CMake documentation

	macro [https://cmake.org/cmake/help/latest/command/macro.html]

Object libraries

CMake documentation

	Object Libraries [https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#object-libraries]

	add_library(… OBJECT …) [https://cmake.org/cmake/help/latest/command/add_library.html#object-libraries]

As documentation states OBJECT library is a non-archival collection of object files.
OBJECT libraries have few limitations which makes them harder to use.

target_link_libraries

Note

This limitation was removed in CMake 3.12 [https://cmake.org/cmake/help/v3.17/release/3.12.html#commands]

OBJECT library can’t be used on the right hand side of target_link_libraries command.
In practice it means that you will not be able to make a hierarchy of targets as you
do with regular add_library command.

Example:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT boo.cpp)

add_library(foo OBJECT foo.cpp)
target_link_libraries(foo PUBLIC boo)

add_executable(baz $<TARGET_OBJECTS:foo> baz.cpp)

Will produce an error:

CMake Error at CMakeLists.txt:8 (target_link_libraries):
 Object library target "foo" may not link to anything.

You should put all dependent components to add_executable
explicitly:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT boo.cpp)

add_library(foo OBJECT foo.cpp)

add_executable(
 baz
 $<TARGET_OBJECTS:foo>
 # List all 'foo' dependencies explicitly
 $<TARGET_OBJECTS:boo>
 # ...
 baz.cpp
)

If this component is optional:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

option(FOO_WITH_BOO "With 'boo' component" ON)

if(FOO_WITH_BOO)
 add_library(boo OBJECT boo.cpp)
 set(boo_objects $<TARGET_OBJECTS:boo>)
else()
 set(boo_objects "")
endif()

add_library(foo OBJECT foo.cpp)

add_executable(
 baz
 $<TARGET_OBJECTS:foo>
 ${boo_objects}
 baz.cpp
)

Target name

Even if an OBJECT library is not a “real” target you will still have
to name it carefully as a regular target since it will occupy slot in
pool of names. As a result you can’t use it as a local temporary helper tool:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_subdirectory(boo)
add_subdirectory(bar)

boo/CMakeLists.txt

add_library(core OBJECT x1.cpp x2.cpp)
add_executable(boo $<TARGET_OBJECTS:core> boo.cpp)

bar/CMakeLists.txt

add_library(core OBJECT y1.cpp y2.cpp)
add_executable(bar $<TARGET_OBJECTS:core> bar.cpp)

Error:

CMake Error at bar/CMakeLists.txt:1 (add_library):
 add_library cannot create target "core" because another target with the
 same name already exists. The existing target is created in source
 directory "/.../boo". See documentation
 for policy CMP0002 for more details.

Usage requirements

Usage requirements will not be propagated:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

include_directories("${CMAKE_CURRENT_LIST_DIR}")

add_library(boo OBJECT boo.cpp boo.hpp)
target_compile_definitions(boo PUBLIC FOO_WITH_BOO)

add_executable(baz $<TARGET_OBJECTS:boo> baz.cpp)

// boo.hpp

#ifndef BOO_HPP_
#define BOO_HPP_

#if !defined(FOO_WITH_BOO)
error "FOO_WITH_BOO is not defined!"
#endif

#endif // BOO_HPP_

// baz.cpp

#include <boo.hpp>

int main() {
}

boo.cpp source will compile fine because FOO_WITH_BOO
will be added:

/usr/bin/g++ -DFOO_WITH_BOO ... -o CMakeFiles/boo.dir/boo.cpp.o -c /.../boo.cpp

But not baz.cpp:

/usr/bin/g++ ... -o CMakeFiles/baz.dir/baz.cpp.o -c /.../baz.cpp
In file included from /.../baz.cpp:3:0:
/.../boo.hpp:7:3: error: #error "FOO_WITH_BOO is not defined!"
 # error "FOO_WITH_BOO is not defined!"
 ^

No real sources

As mentioned in documentation you can’t have target with only
OBJECT files. E.g. this code will not work with Xcode:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT boo.cpp)
add_executable(foo $<TARGET_OBJECTS:boo>)

enable_testing()
add_test(NAME foo COMMAND foo)

No warnings or build errors but when you will try to test it:

1: Test command:
Unable to find executable: /.../_builds/Release/foo
1/1 Test #1: foo***Not Run 0.00 sec

Note

As a workaround you can add dummy source file to the executable.

Name conflict

You can’t have two source files with the same names even if they are located
in different directories. This code will not work with Xcode generator:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT x.cpp boo/x.cpp)
add_executable(foo foo.cpp $<TARGET_OBJECTS:boo>)

As a workaround source files can be renamed:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo OBJECT x.1.cpp boo/x.2.cpp)
add_executable(foo foo.cpp $<TARGET_OBJECTS:boo>)

Or additional target can be introduced:

CMakeLists.txt

cmake_minimum_required(VERSION 3.2)
project(foo)

add_library(boo.1 OBJECT x.cpp)
add_library(boo.2 OBJECT boo/x.cpp)
add_executable(foo foo.cpp $<TARGET_OBJECTS:boo.1> $<TARGET_OBJECTS:boo.2>)

target_compile_features

CMake documentation

	CMake compile features [https://cmake.org/cmake/help/latest/manual/cmake-compile-features.7.html]

	target_compile_features [https://cmake.org/cmake/help/latest/command/target_compile_features.html]

This function sets locally something that belongs to global settings.
Such behavior can lead to nontrivial errors. See for details:

	ODR violation (global)

	C++ standard

write_compiler_detection_header

CMake documentation

	WriteCompilerDetectionHeader [https://cmake.org/cmake/help/latest/module/WriteCompilerDetectionHeader.html]

This module doesn’t provide enough abstraction. You have to specify supported
compilers explicitly. From documentation:

Compilers which are known to CMake, but not specified are detected and a
preprocessor #error is generated for them.

Meaning that this code:

CMakeLists.txt

cmake_minimum_required(VERSION 3.10)
project(foo)

include(WriteCompilerDetectionHeader)

set(gen_include "${CMAKE_CURRENT_BINARY_DIR}/generated/")
write_compiler_detection_header(
 FILE "${gen_include}/${PROJECT_NAME}/detection.hpp"
 PREFIX ${PROJECT_NAME}
 COMPILERS Clang MSVC
 FEATURES cxx_variadic_templates
 VERSION 3.10
)

add_executable(foo foo.cpp)
target_include_directories(
 foo PUBLIC "$<BUILD_INTERFACE:${gen_include}>"
)

// foo.cpp
#include <foo/detection.hpp>

int main() {
}

Will return error while compiling with GCC:

/usr/bin/g++ ... -c /.../foo.cpp
In file included from /.../foo.cpp:2:0:
/.../generated/foo/detection.hpp:192:6: error: #error Unsupported compiler
 # error Unsupported compiler
 ^

Compiler identification relies on CMAKE_<LANG>_COMPILER_ID which is not
guaranteed to be set by CMake.
From documentation [https://cmake.org/cmake/help/latest/variable/CMAKE_LANG_COMPILER_ID.html]:

This variable is not guaranteed to be defined for all compilers or languages.

Glossary

	-B

	-H

	-S

	CMake

	Git

	Native build tool

	VCS

	Binary tree

	Cache variables

	CMake module

	CMake variables

	CMakeCache.txt

	CMakeLists.txt

	Developer Command Prompt

	Listfile

	Multi-configuration generator

	One Definition Rule (ODR)

	Single-configuration generator

	Source tree

-B

Add -B<path-to-binary-tree> to set the path to directory where CMake will
store generated files. There must be no spaces between -B and
<path-to-binary-tree>. Always must be used with -H option.

Path to this directory will be saved in
CMAKE_BINARY_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_BINARY_DIR.html]
variable.

Note

Starting with CMake 3.13, -B is an officially supported flag, can
handle spaces correctly and can be used independently of the -S
or -H options.

cmake -B _builds .

See also

	Binary tree

	-S

	-H

-H

Note

Has been replaced in 3.13 with the official source directory flag of -S.

Add -H<path-to-source-tree> to set directory with CMakeLists.txt.
This internal option is not documented but
widely used by community [https://github.com/search?q=%22cmake+-H%22&ref=searchresults&type=Code&utf8=%E2%9C%93].
There must be no spaces between -H and <path-to-source-tree>
(otherwise option will be interpreted as synonym to --help). Always must
be used with -B option. Example:

cmake -H. -B_builds

Use current directory as a source tree (i.e. start with
./CMakeLists.txt) and put generated files to the ./_builds folder.

Path to this directory will be saved in
CMAKE_SOURCE_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_SOURCE_DIR.html]
variable.

Warning

PowerShell will modify arguments and put the space between -H and ..
You can protect argument by quoting it:

cmake '-H.' -B_builds

See also

	-S

	-B

	Source tree

CMake mailing list

	Document -H/-B [http://www.mail-archive.com/cmake-developers@cmake.org/msg16693.html]

-S

Add -S <path-to-source-tree> to set directory with CMakeLists.txt.
This option was added in CMake 3.13 and replaces the the undocumented and internal variable -H. This option can be used independently of -B.

cmake -S . -B _builds

Use current directory as a source tree (i.e. start with
./CMakeLists.txt) and put generated files to the ./_builds folder.

Path to this directory will be saved in
CMAKE_SOURCE_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_SOURCE_DIR.html]
variable.

See also

	-B

	Source tree

CMake

CMake is a cross-platform build system generator. Well this document entirely
about CMake :)

CMake documentation

	CMake [https://cmake.org/cmake/help/latest/index.html]

Wikipedia

	CMake [https://en.wikipedia.org/wiki/CMake]

Git

As a man page states Git is the stupid content tracker originally started by
Linus Torvalds [https://github.com/torvalds]. At the time of the
writing this, Git used to manage current documents and most of the projects
related to CGold. In all cases when VCS functionality mentioned
to show the practical example Git is used but similar cases can be applied to
other VCS’s as well.

See also

	Official site [https://git-scm.com/]

Wikipedia

	Git [https://en.wikipedia.org/wiki/Git_(software)]

Native build tool

Native build tool (also known as native tool or native build system) is
the real tool (collection of tools such as compiler+IDE) used to build your
software. CMake is not a build tool itself since it can’t build
your projects or help with development like IDE do. CMake responsibility is to
generate native build tool files from abstracted configuration code.

Examples of native build tools:

	Xcode

	Visual Studio

	Ninja

	Make

Quotes

Quote from CMAKE_OBJECT_PATH_MAX [https://cmake.org/cmake/help/latest/variable/CMAKE_OBJECT_PATH_MAX.html]:

Maximum object file full-path length allowed by native build tools

Quote from CMake [https://cmake.org/cmake/help/latest/manual/cmake.1.html#description]:

Users build a project by using CMake to generate a build system for a native
tool on their platform

Quote from CMake options [https://cmake.org/cmake/help/latest/manual/cmake.1.html#options]:

CMake may support multiple native build systems on certain platforms

VCS

Version control system. Quote from wikipedia [https://en.wikipedia.org/wiki/Version_control]:

A component of software configuration management, version control, also known
as revision control or source control, is the management of changes to
documents, computer programs, large web sites, and other collections of
information

Example of such software:

	Git

	Subversion (SVN) [http://subversion.apache.org/]

	Mercurial [https://www.mercurial-scm.org/]

	Bazaar [http://bazaar.canonical.com/en/]

Binary tree

This is hierarchy of directories where CMake will store generated files and
where native build tool will store it’s temporary
files. Directory will contain variables/paths which are specific to your
environment so they doesn’t mean to be shareable. E.g. you should never
store files from this directory to VCS. Keeping binary tree
in a separate directory from source tree is a good practice
and called out-of-source build.

Directory can be specified by -B option from command line or
by Browse Build... in CMake-GUI.

See also

	Source tree

	-B

	GUI + Visual Studio

	GUI + Xcode

	Files generated by CMake is not designed to be relocatable

Cache variables

For optimization purposes there are special type of variables which lifetime
is not limited with one CMake run (e.g. like
regular cmake variables). Variables saved in
CMakeCache.txt file and persist across multiple runs
within a project build tree [1].

[1]
Quote from documentation [https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#variables].

CMake module

Listfiles located in directories specified by
CMAKE_MODULE_PATH [https://cmake.org/cmake/help/latest/variable/CMAKE_MODULE_PATH.html]
and having extension .cmake called modules. They can be loaded by
include command. Unlike add_subdirectory command
include(<modulename>) doesn’t create new node in a source/binary tree
hierarchies and doesn’t introduce new scope for variables.

Note

In general by include you can load file with any name, not only
*.cmake. For example:

include(some/file/abc.tt) # file with extension '.tt'
include(another/file/XYZ) # file without extension

Or even CMakeLists.txt:

include(foo/bar/CMakeLists.txt)

Though it is confusing, doesn’t make sense and should be avoided.

CMake documentation

	Modules [https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#modules]

	include [https://cmake.org/cmake/help/latest/command/include.html]

CMake variables

Regular CMake variables. Unlike cache variables
lifetime of regular variables limited with CMake run.

CMake documentation

	Variables [https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#variables]

CMakeCache.txt

File with CMake cache variables.

CMakeLists.txt

CMakeLists.txt is a listfile which plays the role of entry
point for current source directory. CMake processing will start from top level
CMakeLists.txt in source tree and continue with other
dependent CMakeLists.txt files added by add_subdirectory [https://cmake.org/cmake/help/latest/command/add_subdirectory.html] directive.
Each add_subdirectory will create new node in the source/binary tree
hierarchy and introduce new scope for variables.

CMake documentation

	Directories [https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#directories]

Developer Command Prompt

Developer Command Prompt is a Command Prompt with Visual Studio development
tools available in environment:

> where msbuild
C:\Program Files (x86)\MSBuild\14.0\Bin\MSBuild.exe
C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe

> where cl
...\msvc\2015\VC\bin\cl.exe

> where dumpbin
...\msvc\2015\VC\bin\dumpbin.exe

Similar test on regular Command Prompt cmd.exe:

> where msbuild
INFO: Could not find files for the given pattern(s).

> where cl
INFO: Could not find files for the given pattern(s).

> where dumpbin
INFO: Could not find files for the given pattern(s).

Note

There is no need to use Developer Command Prompt for running CMake with
Visual Studio generators, corresponding environment will be loaded
automatically by CMake. But for other generators like NMake or Ninja
you should start CMake from Developer Command Prompt.

See also

	Visual Studio

	Developer Command Prompt for Visual Studio [https://msdn.microsoft.com/en-us/library/ms229859(v=vs.110).aspx]

Listfile

A file with CMake code. Usually (but not always) it’s
a CMakeLists.txt that is loaded by add_subdirectory
command or module *.cmake loaded by include command.

CMake documentation

	CMAKE_CURRENT_LIST_DIR [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_DIR.html]

	CMAKE_CURRENT_LIST_FILE [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_FILE.html]

	CMAKE_CURRENT_LIST_LINE [https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_LINE.html]

Multi-configuration generator

Generator that allows to use several build types on build step while doing
only one configure step. List of available build types can be specified by
CMAKE_CONFIGURATION_TYPES [https://cmake.org/cmake/help/latest/variable/CMAKE_CONFIGURATION_TYPES.html].
Default value for CMAKE_CONFIGURATION_TYPES is a list of:

	Debug

	Release

	MinSizeRel

	RelWithDebInfo

Example of configuring Debug + Release project and building Debug
variant:

> cmake -H. -B_builds -DCMAKE_CONFIGURATION_TYPES=Release;Debug -GXcode
> cmake --build _builds --config Debug

It is legal to use same _builds directory to build Release variant
without rerunning configure again:

> cmake --build _builds --config Release

Multi-configuration generators:

	Xcode [https://cmake.org/cmake/help/latest/generator/Xcode.html]

	Visual Studio [https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#visual-studio-generators]

CGold

	Single-configuration generator

One Definition Rule (ODR)

ODR is a rule for C++ programs that forbids declarations of the entities
with same name but by different C++ code. Better/exact description is out of
the scope of this document, please visit the links below for details if needed.

As a brief overview you can’t do things like:

// Boo.hpp

class Foo {
 int a;
};

// Bar.hpp

class Foo {
 double a; // ODR violation, defined differently!
};

Though this code looks trivial and violation is obvious, there are scenarios
when it’s no so easy to detect such kind of errors, e.g. see examples from
Library Symbols section.

See also

	One Definition Rule [http://en.cppreference.com/w/cpp/language/definition]

Single-configuration generator

Generator that allows to have only single build type while configuring project.
Build type defined by
CMAKE_BUILD_TYPE [https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html]
on configure step and can’t be changed on build step.

Example of building Debug variant:

> cmake -H. -B_builds -DCMAKE_BUILD_TYPE=Debug
> cmake --build _builds

To use another build type like Release use
out-of-source feature.

All generators that are not
multi-configuration are single-configuration.
Typical example of such generator is a
Unix Makefiles [https://cmake.org/cmake/help/latest/generator/Unix%20Makefiles.html]
generator.

Source tree

Hierarchy of directories with source files such as CMake/C++ sources.
CMake starts with the CMakeLists.txt
from top of the source tree. This directory can be set by -H
in command line or by Browse Source... in CMake-GUI.

This directory is mean to be shareable. E.g. probably you should not store
hard-coded paths specific to your local environment in this code. This is
directory that you want to be managed with VCS.

See also

	-H

	Binary tree

	GUI + Visual Studio

	GUI + Xcode

Index

 _images/visual-cxx.png
oq Visual Studio :

Community 2015
with Updates

Python Tools for Visual Studio (une 2016)
v Windows and Web Development
v Cross Platform Mobile Development
v Common Tools

B SelectAll Reset Defaults

Setup requires up to 10 GB across alldrives.

Back Next

_images/with-binary-tree.png
_builds

oo

oo

baz

bar

_images/native-build.png
Y
m
2
&l
H

BBuild

eod

Mebli

_images/source-tree.png
level MakeLists. txt

foo

_images/with-external-module.png
${CHAKE_CURRENT_LIST_DIR}/info/message. txt

${CHAKE_CURRENT_SOURCE_DIR}/CMakeLists . txt; \${CHAKE_CURRENT_BINARY_DIR}/shal

Top-level CMakeLists 5 |

foo

_builds

_images/workflow.png
Initial configure step
should be done only once
by user

This is where "Processing CMakeLists
printed

«DecisionInputs

CHakeLists.txt changed?

User can keep using

native build tool. If CMakeLis:

changed native build tool will run
re-configuring automatically

_images/installer-07.png
A CMake 341 Setup

Completing the CMake 3.4.1 Setup
Wizard

CMake 3.4, 1 has been installed on your computer.

Clck Finsh to dose ths wizard.

Erish

_images/native-build-add.png
Y
m
2
&l
H

_images/installer-05.png
A cvee 21500 S =N

Choose Start Menu Folder
Choose a Start Menu flder for the Clake 3.4.1 shortauts.

Select the Start Menu foder in which you wouid like to reate the program's shortauts, You
an aiso enter a name to create a new folder.

Do not reate shortauts
Hulsoft InstallSystern 12,45

_images/installer-06.png
Hulsoft InstallSystern 12,45

_images/05-ok-filepath.png
A CMake 332 - Cicache-type/_builds =]

Eie Tools Options Help

Whereis the source code: C:/cache-type. [Browse source...
Where to buid the binaries: _ C:/cache-type/_buids. | [Browse guid....
s e
Neme Value

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154 B i

500D (scring): abe
Configuring done

_images/06-check-layout.png
B cgold-example

DR i

[il[=]

#)»

Name
v I buids
% CMakelists.t
= foocpp

_images/05-launchpad-xcode.png
Q xcode

Xcode

_images/05-layout.png
Organize v Includeinlibrary » Sharewith v Bum New folder 8- 0 @

) o

] CMakelists ot
teocor

_images/06-xcode-launched.png
Welcome to Xcode

Version 6.4 (6E35b)

No Recent Projects

Get started with a playground
Explore new ideas quickly and easily.

Create a new Xcode project
Start building a new iPhone, iPad or Mac application.

Check out an existing project
Start working on something from an SCM repository.

_images/07-change-path.png
= 8] %
A CMake 332 - Cicache-type/_builds =(a] % |

File Tools Options Help

Vihere s the source code: C:/cache-type. E

—

Vihere to buld the binaries: _C:/cache-type/_buds.

Search:

%00 (bool): oFF
008 (file pach)
£00.C (aix pach)

200D (scring): abe
Configuring dene

_images/06-configure.png
A CMake 332 - C/cgold-example/_builds =8

Eie Tools Options _Help

Where is the source code: C:/cgold-example |Browse Source.... |
Where to buid the binaries: C:/cgold-example/_builds ~ | Browse Buid...
Search: [Grouped [Advanced % Remove Entry
Nome Value

Configure to update and display new values in red, then press Generate to generate selected buld fles.

Current Generator: None.

_images/06-path.png
A CMake 332 - Ccache-typel_builds

Eie Tools Options _Help

Vihere s the source code: C:/cache-type.

Vihere to buld the binaries: _C:/cache-type/_buds.

Browse Buid.

et (@] [e

Search:
Name. Value
b CMAKE
4 FOO
o

Carent Gnerator vl S 1420154

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

5003 (pool) : OFF
5005 (sile pach)
500C (aix pach)
500D (string): abe
Configuring dene

_images/07-configure.png
A

Where is the source code: /Usersiruslo/cgold-example Browse Source...
Where to build the binaries: Usersiruslo/cgold-example!_builds. Browse Build...
Search: Grouped (| Advanced | dp AddEny 1 Femove Eniry
Name Valve

red, then press Generate to generate selected build files.

Generate Current Generator: None

_images/07-generator.png

_static/plus.png

_static/minus.png

_images/09-configure-done.png
A

Where is the source code: /Usersiruslo/cgold-example Browse Source...

Isersituslologold-example/_builds

Search: Grouped (| Advanced | dp AddEny 1 Femove Eniry

Namo. Valuo

sloMAKE

Press Configure to update and display new value:

red, then press Generate to generate selected build files.

Configure Generate Current Generator: Xcode.

The C compiler identification is AppleClang 7.3.0.7030031
The CXX compiler identification is AppleClang 7.3.0.7030031
Check for working C compiler using: Xcode
Check for working C compiler using: Xcode -- works
Detecting C compiler ABI info
Detecting C compiler ABI info - done
Detecting C compile features
Detecting C compile features - done
Check for working CXX compiler using: Xcode
Check for working CXX compiler using: Xcode -- works
Detecting CXX compiler ABI info
Detecting CXX compiler ABI info - done
Detecting CXX compile features

ile features - done

_images/09-generate.png
A CMake 332 - C/cgold-example/_builds

Eie Tools Options Help
Where is the source code: C:/cgold-example
Where to buid the binaries: C:/cgold-example/_builds

semcn Bl coped [ahonced ¢ aenoreenty

Name Value

2015 wines
2015 Wingd - works

2015 wines
2015 Wingd - works

_images/08-generator.png
‘Specity the generator for this project
Xcode
Optional toolset to use (-T parameter)

Use default native compilers
‘Specify native compilers

‘Specify toolchain fil for cross-compiling
‘Specity options for cross-compiling

Go Back Done

_images/08-ok-path.png
A CMake 332 - Ccache-typel_builds

Eie Tools Options Help

Vihere s the source code: C:/cache-type.

Where to buid the binaries: | C:/cache-type/_buids|

[

Search:
Name. Value
b CMAKE
4 FOO
FOO_A =]

Carent Gnerator vl S 1420154 [

(boo1) - OFF

Configuring done

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

infa_cxe

_images/10-ok-string.png
A CMake 332 - Cicache-type/_builds =]

Eie Tools Options Help

Whereis the source code: C:/cache-type. [Browse Source...
Where to buid the binaries: | C:/cache-type/_buids | [Browse guid....
— o 5 aomes
Neme Value
b CMAKE
4 FOO

F00 A

008 Cilcache-type/barfinfo.txt

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154 B i

5003 (pool) : OFF
5005 (ile pach)

/cache-cype/baz/infs cxs

_images/10-open-solution.png
[T5 G b) b e b b

<[4

Search_builds

»

Organize v Includeinlibrary v Sharewith v Bum

New folder

BB~

o e

1) CMakeFiles

) ALL_BUILD.vexproj
AL BULD.voxproj fitters
(3] cmake install.cmake:

Flfoovorprojfiters
P ZERO_CHECKvarproj
[1ZER0_CHECK vorproj fitters

I 10 items.

_images/09-string.png
A CMake 332 - Ccache-typel_builds

Eie Tools Options Help

Whereis he sourcecodes Cifcache-tpe [romse source...
Where to bl hebinaries:_Ciache-ype]_uids - [oronse ..
ser] Advanced (AEdaERay) (% Remove Enty
Nome Valve
» cvake
4 oo

FOOA]

7008 2 bar/nfo ot

F00_C

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

Carent Gnerator vl S 1420154

5003 (pool) : OFF
5005 (sile pach)
500C (dix pach): C:
500D (scring): abe
Configuring dene

/cache-cype/baz/infs cxs
cache-cype/bar

_images/10-generate-done.png
A

Where is the source code: /Usersiruslo/cgold-example Browse Source...

Isersituslologold-example/_builds

Search: Grouped (| Advanced | dp AddEny 1 Femove Eniry

Namo. Valuo

sloMAKE

red, then press Generate to generate selected build files.

Configure Current Generator: Xcode

The C compiler identification is AppleClang 7.3.0.7030031
The CXX compiler identification is AppleClang 7.3.0.7030031
Check for working C compiler using: Xcode

Check for working C compiler using: Xcode -- works
Detecting C compiler ABI info

Detecting C compiler ABI info - done

Detecting C compile features

Detecting C compile features - done

Check for working CXX compiler using: Xcode

Check for working CXX compiler using: Xcode -- works
Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Detecting CXX compile features

Detecting CXX compile features - done

_images/11-popup-description.png
A CMake 332 - C/cache-type/ builds =1

File Tools Options Help

Vihere s the source code: Ci/cache-type [Browse Source...|

Vhere to buld the binaries: C:/cache-type/_buids. Browse Buid.

- et £ e (8805 3 e

Name Value
b CMAKE
4 FOO
Cfcache-type/barfinfo.tt
Cfcache-type/bar
This s string

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154 B i

5003 (pool) : OFF
5005 (file path): C:/cache-cype/baz/info.xt
500C (dir pach): C:/cache-cype/bar

00D (string): Tnis is scring

Configuring dene

_static/file.png

_images/08-configuring-done.png
A CMake 332 - C/cgold-example/_builds

Eie Tools Options Help
Where is the source code: C:/cgold-example
Where to buid the binaries: C:/cgold-example/_builds

semcn Bl coped [ahonced ¢ Benove ey

Name Value

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

[—

2015 wines
2015 Wingd - works

working CXX compiler using: Visual Scudic 14 2015 Wined
working CXX compiler using: Visual Scudio 14 2015 Wingd —- works

_images/15-gui-advanced.png
A CMake 332 - Cladvanced-gui =N
Eie Tools Options Help
Where is the source code: C:/advanced-gui |Browse Source.... |

Where to buld the binaries: | C:/advanced-gui/_bulds

Search:

<] (oromse B

Name

B

Value

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154

C]

Configuring done

_images/bad-workflow.png

_images/13-gui-internal.png
A CMake 332 - Cinternal-gui/_ =N

Eie Tools Options Help

Wherei the source code: Cs/internal-gu [Browse source...
Where to buid the binaries: _ C:/internal-gui/_buids. | [Browse guid....
s [—
Neme Value

>

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154 B i

Configuring done

_images/14-gui-no-advanced.png
A CMake 332 - Cladvanced-gui/_builds =N
Eie Tools Options Help
Where is the source code: C:/advanced-gui |Browse Source.... |

Where to buid the binaries: . C:/advanced-gui/_buids]

Search:

<] (oromse B

Name Value

T %

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154

k

Configuring done

_images/cmake-environment.png
Generate native tools
from CMake code:

cmake \
Ho\
B builds

Use (CTest to run tests

N

While generating CMake
will find libraries
for your project

Run native
build:

cmake \
--build \
builds

cmake \ & . Install
--build _builds \
--target install
Pack binaries
. @

CPack can create
user-friendly installers:

.msi
.exe
.dmg
.sh
.tar.gz

Now your project can
be used by other
developers!

_images/conflict.png

_images/bad.png
=

[WITH_Foo]

baz

_images/base.png
CH+11 (internally)

[WITH_Foo]

boo.

CH11, (4498

_images/11-project-created.png
..
< m =

» 11 cgold-example > B _buids > [cmake installcmake
= CMaleLists.t & CMakeCachext
< to0.cpp 5 CMakeFies

_images/12-enum.png
A CMake 332 - Chcache-enum_builds

File Tools Options Help

Vihere s the source code: C:/cache-enum

—
Where to build the binaries: C:/cache-enum/_builds Browse Build...
-
e e
:

Libgerypt

e

Carent Gnerator vl S 1420154

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

Configuring done

_images/grouped.png
A CMake 3.3.2 - Ci\grouped-options/_builds. - o X
Eile Tools Options Help

Where s the source code: | C:/orouped-options] Browse Source..
Where to buid the binaries: | C: /grouped-options/_buids | Browse Buid...
I Advanced dt AddEntry | ¢ Remove Entry

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Configure | Generate | Current Generator: Visual Studio 14 2015 Wine+

The C compiler idencificavion is MSVC 19.0.24210.0
The CXX compiler idencificavion is MSVC 13.0.24210.0

Check for working C compiler using: Visual Scudio 14 2015 Wined

Check for working C compiler using: Visual Scudio 14 2015 Wingd — works
Detecting C compiler ABI info

Detecting C compiler ABI info - done

Check for working CXX compiler using: Visual Studio 14 2015 Wined

Check for working CXX compiler using: Visual Scudio 14 2015 Wingd — works
Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Detecting CXX compile features

Detecting CXX compils features - done

Configuring done

_images/installer-01.png
A CMake 341 Setup

X

= |t

Welcome to the CMake 3 4.1 Setup
Wizard

This wizard wil qide you through the instalation of Clake.
341

Itis recommended that you dose al other appications
before starting Setup. Tris il make it possbl o update:
relevant system fles without having to reboot your
computer.

Clck Next to contine.

e)

_images/generate-native-files.png
Y
m
2
&l
H

odeb uild

Mebli

_images/good-workflow.png

_images/installer-04.png
A cvee 21500 N === N

Choose Install Location
Choose the foder in which to nstall CMake 3.4.1.

Setup wil nstal CMake 3.4.1in the folowing foldr. Toinstall i a different folder, cick
Browse and select another foder. Click Next to continue.

Destination Folder

Cisoftidevelop\make . 4.1\

Space required: 42,748
Space avaiable: 56.4G8.

Hulsoft InstallSystern 12,45

_images/installer-02.png
Please review the icense terms before nstaling ke 3.4.1.

Acveesatsewy o)
License Agreement

Press Page Down to see the rest of the agreement.

[EMake - Cross Piatform Makefil Generator
[Copyright 2000-2015 Kitware, Inc.

|Copyright 2000-2011 Insight Software Consortium
|Alrights reserved.

[Redistribution and use in source and binary forms, with or without
Imodifcation, are permitted provided that the folwing conditons.
jare met:

[*Redistributions of source code must retain the above copyright
notice, tis st of conditons and the folowing discaimer. -

| 00 et o o e e, s o e o et szt
ks suhired

Hulsoft InstallSystern 12,45

_images/installer-03.png
A oo 2150 R === NE

Install Options
Choose options for instaling CMake 3.4.1

By defauit CMake does not add s drectory to the system PATH.

Hulsoft InstallSystern 12,45

_images/dont-panic.png
DON’T
PANIC!

_images/generate-native-files-add.png
Y
m
2
&l
H

odeb uild

Mebli

_images/desktop-icon.png
<1

_images/01-configure.png
LX) A CMske 3.5.2 - [Usersruslo/minimal-with-message-master/_builds
Where s the source code: | Users/ruslo/minimal-with-message-master Browse Source..

Where to build the binaries: /Users/ruslo/minimal-with-message-master/_builds | | Browse Bui

Search: [Grouped [Advanced | dfa Add Entry | | 3¢ Remove Eniry

Namo Vaivo
sloMAE

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate | Current Generator: Xcode

The C compiler identification is AppleClang 7.3.0.7030031
The CXX compiler identification is AppleClang 7.3.0.7030031
Check for working C compiler using: Xcode

Check for working C compiler using: Xcode -- works
Detecting C compiler ABI info

Detecting C compiler ABI info - done

Detecting C compile features

Detecting C compile features - done

Check for working CXX compiler using: Xcode

Check for working CXX compiler using: Xcode -- works
Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Detecting CXX compile features

Detecting CXX compile features - done

Processing CMakeLists.txt

Configuring done

_images/01-generate.png
A CMake 332 - Cicache-type/_builds =]
File Tools Options Help

Vihere s the source code: Ci/cache-type

Vhere to buld the binaries: | C:/cache-type/_buids.

Search:

Name Value

b CMAKE

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154 B i

5003 (ool : ¥ES
005 (file pach): boo/info.cxt
500C (dix pach): boo

500D (string): abe
Configuring dene

_images/01-agree.png
You agree to the License
‘Agreement terms when you
click the *Agree" button.

‘CMake - Cross Platform Makefile Generator
‘Copyright 2000-2016 Kitware, Inc.

‘Copyright 2000-2011 Insight Software Consortium
Al ights reserved.

Redistribution and use in source and binry forms, with or without
modification, are permitted provided that the following conitions
are met:

* Redistributions of Source code must retain the above copyright
notice, his listof conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, his list of conditions and the following disciaimer in the
ocumentation and/or other materials provided with the distribution.

* Neither the names of Kitware, Inc. the Insight Software Consortium,
nor the names of their contributors may be used to endorse or promote
products derived from this software without specifc prior written
permission.

Print Save... Disagree Agree

_images/01-modify.png
& settings

€52 SYSTEM Find a setting

Display

Apps & features

Notifications & actions Manage optional features

Apps & features Search, sort, and filter by drive. If you would like to uninstall or
move an app, select it from the list.
Bliiniasiug visual studio community 2015 »
Tablet mode £ Sort by name ~
B [Show apps on all drives v
ROz Microsoft Visual Studio Community 2015 with 8,52 GB
Update 2
Microsoft Corporation 21-ul-16
Storage —
Offline maps Modify Uninstall
Default apps
About

Related settings

Programs and Features

_images/01-open-cmake-gui.png
A CMake 332 =8

File Tools Options Help

Where s the sourcecode: [Bronse source. .
Where to build the binaries: ~ | Browse Buid...
Search: [Grouped [Advanced % Remove Entry
Nome

Value

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

G e

_images/01-go-to-app-store.png

_images/01-launchpad.png

_images/01-open.png
Where s the source code: Browse Source...

Search: Grouped (| Advanced | dp AddEny 1 Femove Eniry

Namo Valuo

Press Configure to update and display new value:

red, then press Generate to generate selected build files.

Configure Generate Current Generator: None

_images/01-reconfigure.png
31 Soluton ‘oo' G projects)
> ALLBULD

b B foo

b i ZERO_CHECK

B C\Windows\system32\cmd.exe

Hello from CGold!
any ki

Pre to continue

Show output from: Build

- =
ZERO_CHECK, Configuration

Build started: Project

Debug x64 -
Checking Build System

Cake is re-running because C:/minimal-with-message-master/_builds/CMakeFiles/generate.stanp is out-of-date.
the file 'C:/minimal-with-messag: /CHakeLists. txt"

is newer than *C:/minimal-with-m maste

r/_builds/ChakeFiles/generate. stanp. depend"

Processing Clakelist
-- Configuring done
-- Generating done

txt

= — ten to: C:/minimal-with-messag:
Build started: Project: foo, Configuration: Debug x64

#00.cpp

£00.vexproj -> C:\minimal-with-me

sage-master_builds\Debug\foo.exe

Build: 2 succeeded, @ failed, 6 up-to-date, @ skipped

_images/01-target.png
®@®® » m/ @rLsud
@ 2ERO_CHECK.

BRAaao
> B

‘@ oH

>

P foo: Ready | Today at 17:12

@ <0 -d O

¥ = My Mac

b ®
No Selection
No Editor
0DGes

Cocoa Touch Class - A Cocoa
Touch class.

U Tost Caso Class - 4 ciass:
imlamenting it e

Unit Tost Gase Class - A ciass:
mlementing st e

88 @ Filter

nav.xhtml

 Table of Contents

 		
 CGold: The Hitchhiker’s Guide to the CMake

 		
 Overview

 		
 What CMake can do

 		
 Cross-platform development

 		
 VCS friendly

 		
 Experimenting

 		
 Family of tools

 		
 Summary

 		
 What can’t be done with CMake

 		
 Language/syntax

 		
 Affecting workflow

 		
 Incomplete functionality coverage

 		
 Unrelocatable projects

 		
 First step

 		
 CMake Installation

 		
 Ubuntu

 		
 OS X

 		
 Windows

 		
 Native build tool

 		
 Visual Studio

 		
 Xcode

 		
 Unix Makefiles

 		
 Compiler

 		
 Visual Studio

 		
 Ubuntu GCC

 		
 OSX Clang

 		
 Minimal example

 		
 Description

 		
 Generate native tool files

 		
 GUI: Visual Studio

 		
 GUI: Xcode

 		
 CLI: Visual Studio

 		
 CLI: Xcode

 		
 CLI: Make

 		
 Build and run executable

 		
 IDE: Visual Studio

 		
 IDE: Xcode

 		
 CLI: Visual Studio

 		
 CLI: Xcode

 		
 CLI: Make

 		
 Tutorials

 		
 CMake stages

 		
 Configure step

 		
 Generate step

 		
 Build step

 		
 Out-of-source build

 		
 Multiple configurations

 		
 VCS friendly

 		
 Other notes

 		
 Workflow

 		
 Makefile example

 		
 Visual Studio example

 		
 UML activity diagram

 		
 Suspicious behavior

 		
 Version and policies

 		
 cmake_minimum_required

 		
 CMake policies

 		
 Summary

 		
 Project declaration

 		
 Tools discovering

 		
 Languages

 		
 Variables

 		
 When not declared

 		
 Summary

 		
 Variables

 		
 Regular variables

 		
 Cache variables

 		
 Environment variables

 		
 CMake listfiles

 		
 Subdirectories

 		
 Include modules

 		
 Common variables

 		
 Scripts

 		
 Control structures

 		
 Conditional blocks

 		
 Loops

 		
 Functions

 		
 Executables

 		
 Simple

 		
 Duplicates

 		
 Tests

 		
 Multi-config testing

 		
 Verbose output

 		
 Subset of tests

 		
 Libraries

 		
 Static

 		
 Shared

 		
 Static + shared

 		
 Symbols

 		
 Pseudo targets

 		
 Imported targets

 		
 Alias targets

 		
 Interface targets

 		
 Collecting sources

 		
 Avoid globbing

 		
 Project layout

 		
 Usage requirements

 		
 Compile definitions

 		
 Include directories

 		
 Link libraries

 		
 Build types

 		
 Detect Multi/Single

 		
 configure_file

 		
 Install

 		
 Library

 		
 Header-only library

 		
 Library with dependencies

 		
 Optional dependencies

 		
 CMake modules

 		
 Export header

 		
 RPATH

 		
 Version

 		
 CMAKE_INSTALL_PREFIX

 		
 Layout

 		
 Samples

 		
 Managing dependencies

 		
 Toolchain

 		
 Globals

 		
 Generator expressions

 		
 Properties

 		
 Packing

 		
 Continuous integration

 		
 Travis

 		
 AppVeyor

 		
 Platforms

 		
 iOS

 		
 Errors

 		
 Universal binaries

 		
 Using dynamic frameworks

 		
 Android

 		
 General Hints

 		
 Generators

 		
 Ninja

 		
 Installation

 		
 Compilers

_images/02-click-browse-source.png
A CMake332-
Eie Tools Options Help

Where s the sourcecode:

Where to buid the binaries: B
Search: [Grouped [Advanced % Remove Entry
Nome

Value

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

G e

_images/02-click-browse-source1.png
Where s the source code:

Where to build the binaries: Browse Buld..
Search: Grouped (| Advanced | dp AddEny 1 Femove Eniry
Name Valve

Press Configure to update and display new value:

red, then press Generate to generate selected build files.

Configure Generate Current Generator: None

_images/01-x64.png
bug

Team Tools Test Analyze Winc
Debug - 164 » Localy

64
™ X Configuration Manager...

_images/02-bool.png
A CMake 332 - C/cache-typel builds

Eie Tools Options Help

Vihere s the source code: Ci/cache-type

[Bromse Source...|

Where to buid the binaries: | C:/cache-type/_buids|

~ [Bronse .

coost Elsaarcs (EBEERT) [e

Name Value

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

[corigre | [generate | curent Genrator: Vel S 142015 s i

Siis I S

500_C (dir pach): boo
500D (string): abe
Configuring done

_images/02-launchpad-terminal.png
Q terminal

Terminal

_images/02-modify.png
g Visual Studio

Community 2015
with Updates

Modify Repair Uninstall

_images/02-configure-again.png
LX) A CMake 3.5.2 - [Users/ruslo/mi

al-with-message-master/_builds

Where s the source code: | Users/ruslo/minimal-with-message-master

Browse Source...
Where to build the binaries: | /Usersiruslo/minimal-with-message-master/_builds | | Browse
Search: 9 Grouped | Advanced | Ads Enty | | ¢ Remove Enty
Name Ve

> CMAKE

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate | Current Generator: Xcode

Processing CMakeLists.txt
Configuring done

_images/02-drag.png
A cMake

la

CMake.app Applications

_images/02-notify.png
File Modification Detected ==

i, Theproect ALLBULD has been modifed outsidethe environmert.
B Press Reload to load the updated project from disk.
Press Ignore to ignore the external changes. The changes will be used the next time you open the project.

J [tgnorean

_images/02-run.png
foo: Ready | Today at 17:13

LX) El M foo) = My Mac.

@ <0 -d O

B RQAO©=0o B8 < > NSeecton e
> B o
No Selection
No Editor
D0oen

+[@me oH)

Cocoa Touch Class - A Cocoa
Touch class.

U Tost Caso Class - 4 ciass:
imlamenting it e

Unit Tost Gase Class - A ciass:
mlementing st e

88 @ Filter

_images/02-search-for-xcode.png
*x B BB 9% ©

Featured Top Charts Categories Purchased Updates

Search Results for “xcode” SortBy: | Relevance

Xcode. Dash 3 - API Docs &S, Docs for Xcode Course for Xcode 7 Lite
Developer Tools. Developer Tools. Developer Tools. Za >

Kk K /7 33 Ratings kK k% 9 Ratings.
e) L=} =]
e In-Aop Purchases

IDAssetManager Lite f App Icon Gear - imag Training for Xcode 5| IDAssetManager Pro f

Developer Tools Developer Toas Developer Toos | Doveioper Toos
i

cer -} [cer -] [5200, -] ol 1 3505 -]

In-App Purchases

Project Analyzer for X. Tutorial for Sprite Kit - ‘Switly-Clean for Xcod, Applcon Maker for Xc.
Developer Tools Developer Tools. Developer Tools. Developer Tools.

oo T «mn mmm

AssetsGenerator - Ge. Project Statistics for X. iConeer - iconset and Project Duplicator for
Developer Tools. Developer Tools. Developer Tools. Developer Tools.

_images/03-click-browse-build.png
A CMake332-
Eie Tools Options Help

Vihere s the source code: C:/cgold-example:
Vihere to buld the binaries:

Search:

Name

Press Configure to update and display new values i red, then press Generate to generate selected buld fies.

G e

_images/03-developers-tools-pop-up.png
@ ruslo — bash — 80x24

Last Togin: Wed Jun 20 21:36:14 on ttys000
osxi~ ruslos make

xcode-select: note: no developer tools were found at '/Applications/Xcode.app',
requesting install. Choose an option in the dialog to download the command line
developer tools.

osxi rustos |

developer tools. Would you like to install the tools
now?

Choose Install to continue. Choose Get Xcode to install Xeode
‘and the command line developer tools from the App Store.

_images/02-startup-project.png
D4 foo - Microsoft Visual Studio (Administrator)
File Edt View Project Buld Debug Tem Took Tet Anshze Window
SO B MM 9O - Dby -|pe - b Locsl Wind

olution

& o-sa@ s=
Search Solution Explorer (Ctrl+;) P
17 Solution 'foo’ (3 projects)

Bui
Rebuild
Clean

b [l ZERO_CHECK

View ,
Analyze .
Project Only .
Retarget SDK Verson
Scopeto This

B New Soluton Explorr View
Build Dependences ,
Add ,

5 Class W

Ctrl+Shift-X

Set as StartUp Project

% cu X
Paste Ctri+
X Remove Del
Rename
Unload Project

Rescan Solution
© Open Folderin File Explorer
o Properties AlteEnter

_images/03-browse-build.png
A

Where is the source code: /Usersiruslo/cgold-example Browse Source.
Where to build the binaries:

Search: Grouped (| Advanced | dp AddEny 1 Femove Eniry
Name Valve

Press Configure to update and display new value:

red, then press Generate to generate selected build files.

Configure Generate Current Generator: None

_images/03-generate.png
LX) A CMake 3.5.2 - [Users/ruslo/mi

al-with-message-master/_builds

Where s the source code: | Users/ruslo/minimal-with-message-master Browse Source...

Where to build the binaries: | /Usersiruslo/minimal-with-message-master/_builds | | Browse

Search: 9 Grouped] Advanced | AddEnty | | 3¢ Remove Entry
Name Value
» CMAKE

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate | Current Generator: Xcode

Processing CMakeLists.txt
Configuring done
Generating done

_images/03-launchpad.png

_images/03-filepath.png
A CMake 332 - C/cache-typel builds

Eie Tools Options Help

Vihere s the source code: Ci/cache-type

Vhere to buld the binaries: C:/cache-type/_buids.

F00_C boo
F00D abe

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Carent Gnerator vl S 1420154

5003 (pool) : OFF
005 (file pach): boo/info.cxt
500C (dix pach): boo

500D (string): abe
Configuring dene

_images/03-finished.png
©0® > H W io)m MM Finished running foo : foo.

@ <0 -d O

BRQA O S ¢ > NoSelection e
> B o
No Selection
No Editor
D0oen

Cocoa Touch Class - A Cocoa
Touch class.

U Tost Caso Class - 4 ciass:
imlamenting it e

Unit Tost Gase Class - A ciass:
mlementing st e

+(® (@ Fitier Al Output & 1 |00 | 88 @ Fiter

_images/03-start.png
D4 foo - Microsoft Visual Studio (Administrator)

Fle Edt View Project Buld Debug | Team Tools Test Analze Window Help
SO (B M D - Windows > |
Graphics ,

[Show Disgrostic Tools Ctls A2

Solution Explorer
@ - dB L

Search Solution Explorer (Ctr+;)
1 Solution foo' (3 projects)

b Pl ZERO_CHECK Profiler »
¢ Steplnto A1
7 Step Over
s :
£ Optior

o fooPropertis..

_images/04-change-filepath.png
A CMake 33.2 - Ci/cache-type/_builds =@ =
Fie Tools Options Fiep

Vihere s the source code: C:/cache-type.

Vihere to buld the binaries: _C:/cache-type/_buds.

Search:
Name value
» cmake
k0
Foo A
[roo0e ______________________________________loooniul =
Foo.c oo
foo 0 e
A Select File for FOO_B TS
O Corim » oromics s i s e 6] oo 5]
Organize v Newfolder 8- 0 @
[iios

Press|

——

%00 (bool): oFF

%008 (file pach): boo/info.txs
£00.C (dix pach): boo

200D (scring): abe
Configuring dene

_images/03-run-install.png
*x B BB 9% ©

Featured Top Charts Categories Purchased Updates

Search Results for “xcode” SortBy: | Relevance

Xeode Dash 3- API Docs &S Docs for Xcode Gourse for Xeode 7 Lite
Doveloper Tools: Developer Toos Developer Toos o
Kk K /7 33 Ratings kK k% 9 Ratings.

In-App Purchases

IDAssetManager Lite f. App Icon Gear - imag Training for Xcode 5| IDAssetManager Pro f

Developer Tools. Developer Tools. Developer Tools. ! Doveloper Tools.

@ emn

In-App Purchases

Project Analyzer for X. Tutorial for Sprite Kit - ‘Switly-Clean for Xcod, Applcon Maker for Xc.
Developer Tools Developer Tools. Developer Tools. Developer Tools.

oo T «mn mm

AssetsGenerator - Ge. Project Statistics for X. iConeer - iconset and Project Duplicator for
Developer Tools. Developer Tools. Developer Tools. Developer Tools.

_images/04-installed.png
(@) The software was 3

_images/04-launchpad.png

_images/04-create-new-folder.png
A CMake332-

Fie Tools Options Help

Wihere s the source code: C:/cgold-example:

Vihere to buld the binaries:

Search:

Name.

Browse For Folder

Press Configure to update and display new values in

P—

Enter Path to Buld

_images/04-hello.png
Fle it View Project Buld Debug T Took Test
RSN Debug ~ 64
e cax
@ o-5aB A=

olution Explorer (Ctrl+

31 Soluton ‘oo' G projects)

Analyze Window Help

- b Local Windows Debugger = Auto -

b [ALLBULD
b & foo

» o 7m0 creck From CGe

any key to continue

Show output from:
- Build started

1>

Build -
ZERO_CHECK, Configuration

Project Debug x64

1> Checking Build System
1> Ciake does not need to re-run because C:/cgold-example/_builds/ChakeFiles/generate.stamp is up-to-date

2-

- Build started

Project: foo, Configuration: Debug x64

2> Building Custom Rule C:/cgold-example/Chakelists.txt
2> Ciake does not need to re-run because C:\cgold-example\ builds\CHakeFiles\generate.stamp is up-to-date

2
2

0.cpp
0.vexproj -> C:\cgold-example_builds\Debug\foo.exe

Build: 2 succeeded, @ failed, 6 up-to-date, © skipped

_images/05-create-new-folder.png
Name of new folder:

_builds

Cancel Create

_images/04-new-folder.png
1B cgold-example el (Ca'searcn]

' CMakeLists.txt
[foocpp

_images/04-search-cmake.png
CMake

